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Abstract

A theory of the analysis of nonlinear ,iytems is developed. The central problem Is
the mathematical rvezesentation of the dependence of the value or the output of such
systems on the present and pst of the input. It is shown that these sybtents can be con-
aidered as generalized furs.;ti -. , and that many ma'homatical methods used for the
rcpresentation of functions of a real variable, particularly tables of values, polynomials.
and expansions in series of orthogonal iunctions, can be used in generalized form for
nonlinear s-stcms.

The disbcussion Is restricted to time-invarIant systems with bounded inputs. A defi.
nition of a continuous system is given, and it Is shown that any continuous system can heS~~approximately represented, with the error as small as may be req, lred, by the methodbs

mentioned above. Houghly describ."d, a continuous system Is one that is relatively
insensitive to snmal cnanges in the input, to rapid fluctuations (high frequencies) in the
input, and ta the remotr past of the inputl.

A system is called an analytic sy.t-em if it can be exactly represented by a cvrtain
formula th-.t ix a power-series Reneralization of the convolution integral. This formula
can represent r.ot only vont•inufg bhy'ems but also no-memory nonlinear systems.

- Methods are derived for calculatung, m analytic form, the re.,ults of Inversion, addition.
mulitiplieatia. ,east "de combutation, and simple feedback connection of analv'ic tytems.

* The resulting seriet is proved to be convergent w.der certain conditions, and bounds are
derived for the radju-i of convergence, the output, and the error incurred by using only
the first few terms. Methodn are suggested for the experimental determination of ana-
lytic repredsentut.ions for given systems. I
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I. INTRODUCTION

I. i NONLINEAR SYSTEMS

At the present time the most useful methods for mathenatical anasis and degl• rf

electricat systems are based on the theory of linear Fystenis. Tboe tetbiuqa of anf lyies

and design of linear sybtems have heen well developed, and they ,re used not only for

perfectly line;,r systems but also for almo.t linear systems.

* M.any -otmmunication and control devices are not cearly lnear, &,metimes nvonlin-

carity it essential to the operation of a device, sometimes it is undesirable but unavoid.

able, and svineLuums a nonL.aear component. although it is not eas..ottal. ,ay Inve better

res•lts thaja any isner component that mie.t be used in its place. zumetime• nonlinear.

Ity im avoided, not because it would have an undesired effect in prictice, but simpyj

because i.u effect cannot be c,,mputed. There has therefore been 3A merasing effort to

uevelop rnethou. f analysis and design for nontinear devices.

It is appropriate to note hcre the relation between linear and nronlnear systems. A

nonlinear system can be jit 'o.t linear, but there is no such thing as a linear sy-stem that

is aLmoit nonlinear. Th, i.naer case is a limiiting case o: norilu.earizy. and it Is an

especially simple, not a especla.ily difficult. limitinIg case.

We should expect, ther-Jfor. that any theory or technique that is adeq-.aie for general
nonriLear systems mu.,;. Lc equally aeequate for linear systems, The word'norJinear% is

approoriste only to su-ecial technique -a generaL theory, applicable to both linear arid non-

linear systems. sheoild not be called 6nonllrear,' but $general.* However, the designation

2nonlinear* w!l1 - used in this report to indicate the breadth of the theory. with the

understanaing tha* it is not to be interpreted literally as eicluding: the special linear case. f
1.Z HISTORICAL BACKGROUND

Y.(i ,'c i effort to develop techniques of nonlin-.ar system a.%lsyals has been prima.

rily abo,,cisted with a nimbirer &.f Itusslan schools. I" 4his conne-ction Poincar4, although

he was not a Russian. matst be mentioned, as well s, atiapounoff. Andronov and C•%aikLn.

Kryloll and Bogoliuboff, A great deal of thi., work was summarized by Midursky f ) and

published in 1947. This earlis: rt-?nrch was directed principally toward the solution of

nonlinear differential equations and the Ini,.a*"ton of the proper'-.:s oi their solutions.

Fr.•itful as this work was, its scope is limited. t has played no part in the author's

research.
The author's research is based on the reprvso.tation of nonlinear systema by

expressing the output directly in terms of the input. The roots of t.us approach n'.lght

be •istorically :-.cd to Volterra (Z), who L-cluded a theory of analy-.ic Umctioals in his

& Leeons v-,-' .e ".ins de lignees in 1913. In 1923, Wiener (J) brought the theory of

"Browyj'4 motion to bear on i ,i ')'enm of defining an integra over a space of functions,

Y.nd i-..lAuded a discussion of Vth average of &j, tnalytic functional. In 144Z. Wiener

brouvht Brownian motion sod analytic functlonals together agate 144. TbI later paper

. ........... ...,



contains the first use. In the representati'n of nonlinear systems, of the formula that
formn the basis of Section IV of thim report, and, In ",ct. it seems to be the first attemript

at a gekweral formula for the represenation of not -ear systems. Some other work along

the same lines was done more recenUy Sy Ittehar.- (5) In 1951. and by Deutsch (6) in 1955.

In recent years Wiener developed a gen..-al representation method for nonrmear eys-
tem* that is based on the properties of Brorwnian motion, but does not employ the forrmula

that he used in 194Z. This theory differs fromr the 1942 report in that it attacks the gen-

eral nonlinear problem rather Uhan the specific problem of noise in a particular class of

systems. The method has been prestnted in unpublished lectures and described, although

not in Its most recent form. by Boczon (7) and by Bose (8. 9). Theoretical opproaches

related to this method have been ci"wvaoped ny Singleton (10) and by Bose (9). The repre-

sentation formu!a developed by Ladeh Il l is si:.xilar in its basic orientation.

1.3 S'STEMS AND FUNCTIONS

Oie ouf the central prcblerns ir the an ulyrti of nonlinear systems is the rinding of a

gtod representation formkila. Such - forLnu.la inUst be able to rclirecent, either exacUy

or w-tn Arbitrarily a;a, error, a Large class of systems; and it must also be convenient

to! use in t .4:u.a.,rj,. rivol,,- tvettems.

There is, however. .a representation problem in a more fundamental sense. It is

recessary to uie ,oea of a nonluiear system to more fundamental concepts. This

'tee an abntr ct repregentati..n. - h(ise generality is not limited by any concession

tc mputational convenience. W:tn -iuch a representation at hand. representation for-

mulas designed for computational needs can be more easily apprehended.

This abstract repreaenta•ion: is found in the general concept of a function. A futnction,
abstractly defined, is a relation between two sets of objects, called the dormain and the

- ange of the iunction. which assigns to every object in the domain a corresponding object

in •ne ran"if*. *A'th every object in the range assigned to at least one object in the domain.

It may te 2aiJ that a function is any relation of the form 'plug in x. out comes ys; the

set of PC th;-6 can le pluegcd in is the domain, and the ret of all y that can come out

Is the ra,.ge.

This definition implies no restriction on the nature of the objects x and y. We may

have, for example, an amplifier chassis with a.n entpty tube socket: every tube that can

be iinserted In the socket will give us a different amplifier. Therefore. we have a func.

tion; the domain of this function Is the set of all tubes that can be USerted in the socket,

and the range is the set of Q'l implifiers that can thus be ubtalned.

We are most faonilar with functions whose domain and range are sets of real num.

bers. buch functions are called 'real-valued functions of a real varial*e0; for convon.

ience, we shall call them 'real functions.' In general, any fun.ction whose range is a
set or real numbers Is called a "real-valued function.3 A real r.-.cLion is usually repre.

sented by a letter, such as I. The equation y a f(x) means that y is the element of the
range which f ussigns to the element x of the domain. Note that f(x) is not a fwtction.

I



but a value of the function f; that is. an element of O rasv.

A nonlinear as)tem with one inout and one outp,: w a t•mtan Ass deft.

niticn. For every Lnput in ,hfp set of inputs that the sX.'nem is dvitived to areiw. tO

system produces a corresponding otput. These tiq'u and outputs eaL a.ie-rvselsli t

reprerented by functions. If we assume thut the inputs &ad outputs &re viectraw aipwL.

they can be described by real functiors: To every real aumber t there & asaasgled a

correspondug real number f(i) that represents the ,i.ae of U..: input or -' at tUme t.

A nonlinear system can therefore be represented k% a t, uaon whose d-..aiin and range

are sets of rtal -'•,nctions. Although such a funueuint : conventionally called w *operator*

or a Otran Jcrmation,' It will be referred to in this repart as a 2typerl. ,--ib= to empha.

saze the faýit that it is a function. A hyperfuncUon (or the system It repr-jew.&l will be

denoted by a capital script letter; the equation g a li(fl states that C is the rel function

that represenis the output of the system H when ibe input is the signal repreIsie.W by the

real fanction f.

Most of the discussion in the following sections deals specifically with uie-invariant

systerms. Such syslenis can be represented by a kind of finction that is ssahper than a

hyperfunction - a function whose domain is a set of real funcutons nd wh*, ranget o a

set of real numbers. Such functions are conve,.tionallv called Ofunctional..

The argument will be simpler if we consider 0nly phywi,-ally realizable sysiefts. L.-at

is. systems in which the value of the output at any t. doeg not depend am flftare valuer

of the input. If the system H is physically realizable aml Lime-invarianto &bps me output

at 3 particular time t can be determined without krowul& either the value of t or the

time at which each v'lue of the input occurred; it is raucient to specify. forery .vo u-

negative number T. whAt the value of the input was i second# ago. This imlpst data can

be expressed by the real functi•4n u. u(T) 8 f(t-t) for v ;, 0. where f repreents the input

in te usý.al form. To each function u there correspoads a urukue real numer 11(u). wi'h

the property that the value of the output of the syrem. ".s h(u) whenever the pat of the

input Is represented oy u. The funcuoin h is a '."nctbw&L' according to the deiawti. given.

For a specified input f, the funcuon u will b,- differernt for different t and will be deslg.

nated as ut if t is to be specified; as t cha-ges. ut charnges, and the value of the output

changes with it. Uf the system jI ts not physica&Uy re--izable, but is still timi.e.tvariant.

the only change that is necessary in this argument as to define u(i) for .i1 v,-.egative as

well as positive.

For the most part, we shaUll consider ,yatems for bouMded inpu;a ,.ly. A rtal func-

tion f, representing an input. ,ill be called bounded.Ri if If(t) 1 R for all t The set

of all real funcutons u, u(v) defined for r a 0. that are bounded(R), wiU be called PHI(R).

(PBE stands for Past of Bounded Input.) All these real functions will be krasmd to be

LdiWor r.te: With the perue.-tot of the author, the script let'# -s O"r-a.nally used
(i.e.. Y'. &. Jr. etc.) have beea replaced with the correswponding typsd letter ad uike-
tied by an underline.

3
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Lebeegue measurable; in practice this to no restrictioe, @Lmc, sorne tricky mathematIAM

"work Is required to prove the existe.ice of functions that are not Lebesugue measawte.
Such "improper functions" Ps impulses or tntintte-banlwidth white notase are not resll,
!unctiuns. wred thus their measurability is questionable, but they are excluded from ea.
aideration as possible inputs on tht ground that they are not bounded.

We shall always consider two real functions f snd g to be equivalent it

[fix) - jt'x)] dx a 0

for all real numbet a a and b. since twc. such functions are indistinguishable by any

physical measurement process.

1.4 REPRESENTATION OF FUNCTIONS

The central problem of computationatly convenient representation can now bo treated
with some perspective. We have to fund convenient representations for certain kindAs of
functions, namely. functionals and hyperfunctions.

Suitable metiods vsan be derived by gonerai~zing the faruliar methods used for the
representation of rcal functions. These include: (a) miscellaneous designations for

special functions. e.g.. algebraic, trigonometric; (b) irnplicit functio.3; V tak:••s of
values; (d) polyi.;e.ials, Including power series; and je) expansions in serie: !f orthog.

onal functions. The last three are metnods of approximate representation, %r r-prvsen.
ta-.ton as a limit of successive approximatons. All the methods mentioned in :ecutn 1.2 !
are particular forms of gneralizatLions of these methods.

Several claases of specially designated systemz. that is. method (a) of the precedi•g

paragraph, are already well known. Perb,.ps the most important is the class of linear
&ystems, whose special representation by men. of the convolution integral has been
found particularly convenient. No-memory .ystems (the value of whose output at any

time dependis only on the vasue of the input at t-hat time), differential operators (not dif.
fe-ential equations, but such direct wtatements as Mthe output ts the derivative of the
input"), and integral operators (among which are the integral operators of Zadeh (I III

ars also specially represented.

An implicit functlo! L method 1b), is an equation that does not givc fQz) directly in

terms of %, but specifies a condltion Jointly oi x a"d f(x) so that for any x there is a
value for f(x) that wUi satisfy the condition. A differential equation is exactly ths sort
of condition: given any input f, it is necessary to go through a process called 'solvInA

the differtntial equations in order to obtain the output g. The methods de .sed by the
Russian schools for ubtaining such solutions are all special methods, restricted to cer-

tams kinds of equations and certain kinds of inputs, just as tne methods of solution for

implicit zeel functions are all special methods.
Approximstion methodi: jc). (d), and (e) are more generally applicable, since they

r
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do bo rvqs.re specal forms. lor O mprepveue.w ei Ow tiftftw 140&4%" do
requa we sonz eondtica~su te satiar-4 For *a-PP Ied ft wil be dsgsAlbed. &
Stall.MM: a"n&tao for araitxatily close appeomeaisb is ~thta twactwo OW Is to 11W

repreftmte bw cowunwas, and kave a compci Gous=. The snlerprrts at oftre Corn.

diOms Sw sysiubs will be duzrwaseed is Section U. 7% ae mtal thetrnetves will ra
be braenlY dsribed.

& tale f e~tas Ic isc~eve~of here as being .aetl in the sagbiezt posasible laum-

ner. "at ws wittoat anterpol~atio. Ina the coair-srctwo of the table a fuute sel of z I i

selected from It deamais. WAd for each selected a I Oe carrespondin Its & is tabulated.

In the use of the tabte, for &A>nv% rits the nearest tabralau<! K a. Ris etert* and the cor-

respoosg Lb 1 is tazen, as an apjprox.~a~ton to ftii. Owing to the way as vt.Kh the table

is used. its coss-r%&ctAon, can be Ir,3dified. First. siece each tabilated a, I S actibally used
to reIpreieut a set of uae4tiiaong KS., the entryr to use tabtt zna) be a designat..i for this

set instttd of a particular we set. -,S-nd. since ea.. ta&4lted fizz is .5sued to

appronaitate a set of (It). the tsauas~ed value need not be a pasrtiv-.JAr ft a tbA nasy be
simply a valje triat is represeyrauvt 9r ths set of fl4x. Either of these scrwie~s can be

trasnlated uo a maethod for tb* approxi~mate ?,peoetatboz of lunctionals by replacing

x by Q anjd I ay P1. Thae mod-bed schem~e is then a generala descriptioc of Sa"igleton's

naethA' for a~iroxi~mautang nomal.r s~st is by rinste-state rar.-sdueccrs 4!O). Bose's

method t.' represeatauon (0) also empluys the device of a faute taole of valuses. Another
method uvrvovir4 tatiles of v-alues is given &A Se-tion IG-

An abstract detiAsition of a po~lynomial (4) % ill be lpver. --- Section IV. as well as the

pan-icular t,-mr of polynom~ial reoresewntuon, tha! w2.6 also used by Wiener 14).

Ikehara 45). and Deutsch J6)- For o-4r present purpa~e. it Is cufficient to noe that the U
suzm ol a const~ant, a linear system, and products of linar systems~ 4obitaand by using
the saav tapt fer all systems and tnltupl'-img - -- a~ddang thoe csatpulus) is a Polynomial

system-The formulaused w.SecumIV issoaorw atmore 4,eneral thawn th;As and has

been foundf to be co-ireruera for the compuatia.ons that a"e requred in syzitems analysis.

pive promi~se ^C btctng cotnvezuc fir the mreasuremenrt of noa-..next ir ystez.& ist the tano.
ratoý.-* and tbeir advantage& can oe Combinued witz the cornp~z¶.Atonal convV~1ence of poly-

nomi-als by using expg~nsborizs An ortbo%%xWs polywonuuals. The genieralixatiop of these

niethaoda f-irn rea fazoctiarts to s',s~err~s is quite iniereattao. As we know (roum the theory

of real t~bCU~q4s. czpanalai of s a fWK!Wcaoo orthotunal fanc'ions uvol.-es 1 ntegration over

the docAnaa of the function. UntegmiLice over a set ot r-r-l m..irbezs is a fsi-asar process.

but how can we uitegt-..te over a aet of fxmctions? DefutiuCat of such integral* ua" tke

essential p~roc~em that Wiener 03) attacked in 10Z3. and at tmst time it was a ditffacult

problem. Now. bovever. pm beabltv theory offers a sou~ion: ofl a statislac-Ad ensemble

of furilciosoa. winch is just a "-' a! fwaciions with probat.Lrt~ez defuied or. it. an ensemble

aver..ge 4eaPectatwj ~ias equ-alew to a~n integral. flaa is t~he osxventzal reason for the

tntrod"Umt of prooacababty ini the asthioda 0f EW4AtA (7) and b-ose 49). as well as in the



method of Wten"er 4eacraid by Booton and Bose; these can be .thods

of expaiding a nnJinear system in a series o. orthogonal syvtet-.

The following sectins di€cuas some e@ample, if approxLm-. a. U ,r appli.

cations. and some sufficient .onditions for their applicability .%tl etal tith con-

ditions of approximabilry. and the next khree sections are dev.,.. .em t.r3l

methods of approut-tiUm.
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Ii. APPROXIMATIONS TO NO4U.FAR SVS3"M:S

Z. I TOPOLOGY AND APPRUlIMA, CS

Th* orimary aim of this sectu, ts to ectablish sme suficixent conditions fa

approximabu.., of a nonlinear system bk7 tt.e =ethoes t-.: will be described an sstaeuent

sectons. The mzost important relts of thI section are summaraed bn oetiCA-,7,

The thevrevi that will be developed am easenuiaUy dthorems of analysts; tv tact. an*

theorem of analysts, tV. Stone-*ee-r.trass theorem. wil be quoted anid us"e wvttkt

proof. Most of t1 mAW-ma~tcal ,aesi eta be fo.ao. it the retricted context of rea

functiqns. in Rulu'us OPrncinles, 91 Nlatbem-u-atl Analuvsg I I,); the Stone. We.i r"trasa

- theorem that he proved is applicable to -- pur"tie. For a discussion of alys ,•nr n a

* more general settlng. especially for a gevneral defuiton of a topological epace, and for a
more appropriate definition of a c€,acmt set than is given in hud•n. refer.-a,-. 1. 9

* made to KllUs's wFunctuortl A.nalysts a&d Sexi..Groupas (13).

One way in which a topo,-t* maT be rigorouly defined is is, terms of oeahbL"-wood*.

A topological space is a set of objr.czs x int which cerutan sal--& NOLI are desitpalvd as
nkeigi&ULrhoods of specific objects x. (Usua•,ly. there is an it. .it41: bjects -* a!. for

ezch x. an infinity of N~x).I These "eriui usstsfy certuin coiuditi -id tOwt -.,osti
tute the postulates of topology: frr-. every x has at least or . and ewr N•x) con-

tains x; second. if NA(x) and NBix) arc twv) neLghborhoods of the same object x. there

* s an N cx) w" :ahe property that &---J c•ect n"Nc C(x) is a&so in both NA(Z) Mu K
third, for any r.iý;.ct y contained &m ag niag.aorhood ) there is an NB({) with the

* property that any object in Ns(B) as a.so i NA(a). IConventionaly, the oble, in& topo-

logical space are called lpointsl. T•... te--n will not be used in this report because it

suggests a very restricted uiterpre.atwo of topology.)

It wilt now be shown that topolo•, as just lefined is a mathematIc, anah bue of the

engineering idea of approzxrimatioc. Practically. approx.iuations occur wbhe we :-,'iider

some object (e.g. a number, a posiuo in space, a rVsistor, a signal, a systeml ) Usat

is to be used for some purpose, arA wart to know wh-at other objects are sufficiently

similar to it tQ be used for the same pt-pse. We thus define a criterae t of appoxima.-

tion to this object. auid consider J-, se, of all objevt- that. oy this criterion. are good

approximations to it. It will be showm tlsat these approximaUon sets# an mugaborboods.

satl.ify the postuaatest of topoloLg -. st have been givm.

First, eveg.) vbjevt cuviedeted by enginoers is usable for some purpos-e. wad thus at

least one neig borhood is defined .or it: and for any purpose aii oaect in always a good

approximation to itself. Second. ifa& oonject a can be used for two purposes A and 31,

two neighbortood6 N A ( and B 4. tbs being defined, we consider purpose C as the

requirement of being sufficiently simLlar to a to saulfy both purpoes A n4 B; this

defines a neig•horhood NC(i) with the proper'ty that every coject in N C0) as also in both

N A =x}and NB(n). Third. given • a&-ad some NA X). and any y in N•A41. we can evneider

purpose r for y as that of substmcoag for a in the fW(fLiUment of pu poop A. e&d can



define Mllity) an the set of all objects that are sufficiently similar to y to serve thJa pIr-
pose; then every object in Nn(y) is also in NA(K).

These arguments may seem trivial and pointless; actually they establish the reltiton

between topology and spprc -imations and make the topologie4 toundations of analysis.

and all the theorems that 'allow from them, applicable to engineering.

For aity set of otjects, different classes of approxmuation criteria can often be used,

with the result that different aets of neighborhoods and different topologies are obtained.

t~owever, different acts of neighborhoods do not always lead to different topologiev. Two

seta of neighborhood* are said to be bases of the same topology if every neighborhood in

ich set contain* at least one neighoorhood from the other set. This is because the

closed sets, open sels. rnreDact sets, and continuous functions (defizied in section 2.2)

are the same for both sets of neighborhoods.

On a spaci of real numbers, a neighborhood of a number x is defined by the prop-

erty that y is in NI(x) if the magnitude of the difference between x and y Is less than C.

In the uniform topoiogy on a space of real functions, g is in N( (V) if, for every real

number t. the magnitude of the difference between f(t) and g(t4 is Ives than i; a similar

condition defines the uniform topology on a space of functional&. On a space of hyper-

functions (or. eq'tivalently, systems), we define the uniform topology by the statement

that K is in N .(I1) if. fur every input f, at every time t, t,,e magnitude -if the difference

of the values ot K(f) and 11(f) in t is than 6; or, equivalently. K(f) is in N (LU(f) for

every f. A different topology on a space of real fusiclions wIU be defined in section 2.4.

2.z SOME TOPOLO-ICAL CONCEPTS

A number of topological ideas that are to be used in the discussion of approximations

to nonlinear systems will now be defined. We begin by defining open and closed #ets, In

spite of the fact that we shall make no use of them, not only because mathematica- tradi-

tion seems to demand it. but also because many writers define topology in terms of open

sets, rather than in terms of neighborhoods.

An open set is a set with the property that every object in the set has at least one

neighborhood that is contained in the set. A closed set is a set whose compleiaent - the

set of all objects in the space that are aot in the set - is open. An equivalent definition

is that a closed set Is n act that contains all its limit points. When a topological space

is deftned in terms of open sets, neighborhoods are usually defined by calling eve,-y open

set a neighborhood of every object that it contains.

A limit point of a set A is an object (which may or may not be in A) every neighbor.

hood Af which contains at least one object In A other than x. In other words, a ziaftt

point of A is an object that can be approximated arbitrarily closely (I.e., under any

criieb.on of approximation) by objects, other than itself, in A.

The closure of a set is the set of all objects that a:-e either in the set or are limit

points of the act (or both). in other words, the closure of a set A is the act of all oL;ects

; _a



'that can b aMroxliAted arbitrarily closely by objecto in A. In the application of this

concept we- alluil consider the closure of the set of all systems that can be exactly repro.

aented by ,rme tmethod; the closure will tie the set of dl systerma that can be represented

* by this mstizlt. either exactly or with arbitrarily umaU error.

A comlpat, oet Is defined as follows. A collection of neighborhoods is said to cover a"

:aet A if vaury zbjrct in A is in at least one of the neigtpborhoods in this collection. A

-set is ca.lledmumpaLt if every collection of neighborhoods that covers it includes & finite

&ulio'lrctw -that also covers tht set. If we define a criterion of approxLrnation for every

,object to tha. *vt A. by choosing a neighborhood for every object in A. U1mi collection of
-neighborhoniut.-cuvurr A; and if A is compact we can select a finite set uf objects in A

with the p-urutel-: that every object in A is in the chosen neighborhood of at least one of
'the selecttibobjects. The importance of this property can be indicated by interpreting

IneighborhouatlU.m 4a slughtly different way; that is, by considering a neighborhood of an

-object as w --- tt uf objects that x can approximate. instead of :. set of objects that can

,a;")arna ( *. niTag interpretations are equivalent if the approximation criterion has

• h-. proper- t.,hýat x approximates y whenever y approximates x.) Then a compact set

Ia one u.-t,, Ltur any predetermined criterion of approximation, can be approximated by a

finite ubshSrtof itself.

Topolo-gy s combined with the abstract idea of a function in the defintion of a con-

tnuoia furtulUon. Suppose the range and domai--i of a function f are both topological

spaces; I ue -maid to be continuous if !or every x in the dornatin. ard tor: any i,eighborhood

NA(f(x)l of[tthe correaponding f(x), there is a neighborhood N 0 (x) with the property that

whenever- , a in NB '1 J f(y) is in NA(f(x)). (Note that NA and N aare neighborhoods In

-different piares.1 This is a pi ecise statcment of the imprecise idea that a continuous

function is, ae whose value does not change abr.1ptly; it Implies that any approximation

criterion.uantthe range can be satisfie oy #rn appropriate criterion of approximation in the

.domainý.

Z. 3 TWe7. IlMUOttEMS OF APPROXIMATION

In tmenrtw:uf the concepts previously defined, two impor*Ant theorem& on approxima.

tion of funuituons can be stated. These theorems will be applied to nonlinear systems In

section "L4.

The firnat ts a theorem on repreau ntation by tables of values. Let f be a ccbntinuo~ts

function wi•rh a compact domain. Let a neighborhood NA(y) be chosen for every y in the

range. 1hi-n there is a finite rel of objects xi in the domain, and for each Y. a neighbor.

hood ND INQ1, such that eery , in the domain is in at least one Nf(x1), and, whenever x

"is in N 1(i?. f(w) is in NA(fIxi)).

To alipi 'thia theorem, we consider functions whose ranges are sets of veal numbers

or real fitunaons, such as functionsi or hyperfunctions. We choose a poslitve real

r-`.• • •-+;' + +`'mg'+-w--•<•.f.m.• '..'`'`". -



number 6 as the tolerance fur a criteriot of arproximatton, and define neighborhoods

n the ran..ge. .s sectib Suppose sam., topology is also defined in the domain,
and that with these two topologies the function f is continuous. Then we can select a

ftrite set of objecta x and neighborhoods Nix S, as indicated in the theorem; we construct

a table of these xI and the - ,rrvapor~ding fixa). Then, for any x in the domain, we can

find in the table an • W1 be property that x Is in N~xi ) , and the tabulated fix,) wU

differ from f(x) by less ,tan q.

The proo of this theorem is quite simple. Since the function is continuous.

there is a neighbo-hood NBXI) for every a with the property that, it x' is in

Nb(x). f(x') Is in NAl(fx)). The collection of all thest neighborhoods Ni(x) covers

the domain. and, since the domain ins cwnpat t. there is a finite set of xI with the

property that the collection of N1B(x ) alsi covers the domain, This set of xi

fulfills the conditior.s stated in the theorem, and the theorem it thus proved. Inci.

dentally, we have also proved that if a funct:on is continuous and its doain is

compact then its range is also compact.

The sec-..d theo, em to be stated here ti the Stone.Weierstrass theorent; n c:•ec 1, it

a thans-ec, o.: Ute arutoxjination of functions by polvn•.r.iwis. Is is r..tric.e. real-

valtad kt-ntu.n-o 4lthoq:. th.. nature of the domaini is not -- itr., ted. 1. IF si; Or. the

fii st thec. rm in that we asnum.t. L L "he fu_- t.-. to be approximated as contirtuous wLth

compact domain. The statement of thl a Useorem il.ust oe preceded by asome preliminary

definitions.

if 1, (1. amd f• are (unctions with the same domain and A is a real number, then
f a fI + fz Lf fix) a felx) + fzI1) for every x in the domain, f f fz If f(x) a fI(x)f (,x) for

every a in the domain, and f = Af1 if f(x) - Afix) for every x in the domain. These

definitions. although obvious, are loj.cally nontrIvial.

An alebra of functions is a set of functions, all of which have the same domain, with

the property that for every f and g in the set and for every real number A, the functions

feg, fg, and Af are also in the set.

An algebra of futictions is said to separate points If. for every pair of objects x and

y in their domaun and overy pair of real numbers A and 3, there is a function f in the

algebra with the propeA Ly ,nAt fix) a A and fly) a B.

The Stor.e-Weierstrass theorem states that if an algebra of real-valued continuous

functions has a compact domain and separates points, then ins clob.ure of the algebra, in

the uniforn, topology., is the set of all continuous real-valued functions with that domain;

i.e. . for any continuous real-valued function f with that domain, and any positive num-

ber t. there is a function g in the algebra such that Ifix) - g(x)I c c for every x in the

dorma in.

The proof of this theorem U.s been given by RudLn (12); it is too involved to be

repeated herv. Although the context of Iludin's proof may suggest that the theorem con.

cerns only furictions of a real variable, the same proof is valid for compact domains In

the most genrtral topological spaces.

t to



2.4 A SPECIAL TOPOOGICAL SPACK
I

"* The approximnation theorems of section 2. 3 will now tbe siplied to nlu.dinear systeeni.

Specifically. since it was shown in Section I that a time-invariant system can be repre-

vented by a functxinal, they will be apphed to functionals.

The theorems indicate that a sufficient condition for t function to be approxUiable in

that it be continuous and have a compact domain. These properties depend upon the topol-.

ogies on the domain and the range. On the range (which is a set of real nrumbtrs) there

is only one useful tonology; but on the domain (which is a set of real functionas a fairly

wide choice of topologies is possible. The practical .nea•lng of the theorems depends

upon the topology that is used on the domain: but if the theorems are to have any practical

meaning at all, the topology that is used must imply both a physically meaningful defnuli.

tion of continuity and the existence of physically significant compact sets.

A topology %hat meets these requirements has been found. (Further research might

reveaJ others.) On that space P9I(11), which was defined in Section I ss the set of all real

functioiis u for which lu(-}N 4 R for all r in the domain 0 4C < a, neighborhoods N T.6(u)

are defined au follows: v is in N T,&(u), T > 0. 5 0, if and only if

0 [u(ur) - vle)l dl] < 6 (M) r

for all x in the interval 0 6 x i T. The topology defined by these neighbrhoodsa will be

called the RTI (Recent Time Integral) topology.

This condition may be alternatively expressed by defining the functions U and V.

U(x) * u(v) dt, VIx) a v(r) dv (3)

Then v is in NTs(u) if and only It the magnitude of the difference b, -on U(t) and Vix)

!s less than 6 for every x in the interval 0 'x iT. Note thot if v is in NT6 (u|0 then

u is in NT 6 (v), and vice versa. It will be seen that for ,. to be in N 6 (u) no condition

need be imposed on the values of these functions for v • T, although for r 4; T the differ-

er'e oetween u(t) and vIr) need not remain small, but may alternate rapidly between 4

Large positive and negative values.

It wilt be shown in the next section that the space 'I'l(R). for any R, is compact in

the RTI topology. We uerefore consider a functional h whuse domain is the spa•-e

F31(R). This functional is continuous if. for any p)sitive number 4, there exist Positive

numbers T (sufficiently large) and 6 (sufficiently small) such that if v is in NT.5 64

(and v and u are both in PBI(R)). then I14u) - b(v)l < ,. The functional will then be

cdlied continuous(R). and the tILme-in'ariant system 1i that it represents will Also be

" *"-called continuous(R). Any system referred to as continuous is understood to be time.
*ivr vs'iant.

_ . ..- - -
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the reprvstntattor of syst"m .i) N h wctia a "reprsnts the past
Sof the mat. Wr may th'n.•.re tnterpret l-r.ui, ti. for nwwmr systtms (with rwspect

to the Kui topology) by the statement thal a system is % Uonuous(R) if. for all Uwpte

that are botnded(Rl. the value of th. outp•'t is reta-tvely insUetve to stuaRt changes in

tk.e uva. to rapid Cltuat3o ( M4. freqieftles) m the input. and to the remote past of

st follows from the Urst theorem of section 2. 3 that a system J th.t Lb continuOus(R)

can be represented with any des~red accuracy by a fUwte table of vaiue•. since the tune,

tina t0-at represents it is a cntflutnus f•-•ixm with & conpect domain. Let any toler-

ance a be gitv-n; then T and 6 are determined according to tMe continuity condition. a

runte set of re-al (unctioos U i s selected with the property that the collection of neigh.

borbo,-d NT.6(aa) covers P21(R). and these rea. functtios ui are tabulated with the car-

respn-WIMC values b(u)l.
It will be shown in secauo•• S that a tlrne-.nvxrisant Linear syetem is conUwnuous(R)

for any K if and only if its impulse response is Leibeegue integralle; this is roughly

eqivaient to the cdulition that its transients be damped and that its impulse response

*, valve no impulses. The set of all such liear x,-ps3em. all products of these systems.

4L coastant-output s•stems, and all suins of these. is an algebra. The functizonas that

represes, them const&'ute an algebra of continum Awwtionalv. It is easy to show that t
this algebra seperates points. The Stone-Weaersxra6s theorem then implies that any

funct.nal that is cvntnuous(R). with domain PEIA(R), can be approximately represented.

with arbitrarily small error, by a (unctional chosen from this algebra. Hence. an sys. 1
tern tat is c otinums[R) can be approximated arbitrarUly closely in polynomial form.

Z. S CtC(TINV1TY A.'ID COMPACTNESS IN 11TE RECENT TIME1 INTERVAL (RTh)

TOPOLOGY

This ecti•on is devoted to proofs of two statements made in section 2.4: that a time-

invariant liear system is contnuous(R). fo; •ny R. if and only i1 Its impulse response

is Lbes•ute integrable; and that the "pace PB(K) to compact in the RTI topology.

The theorem on c.mttnuity of a linear system wUll be proved f•rst. A time.nvrlat nt

line system is represented by the ft=.inaLt b. defined by

u) a' h(T) u(T) &T (4)

wbere h Is tivr impulse responso of the system. Suppose that h is not Lebesgue Lnte-

grable this may be so either because

I0)l 7 - -a

-t (5
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It. a., In i not abeo" ly integrable). or because the integral e h is on detfte4 that it

IL not equal to the Leb-sogae integral (e.g.. h involves impulses). It will be shown ita

each of these two rAstu that h is not contuinousIR) for any R.
Suppose b Is not absolutel) integrable. Choose ( - 0. and try to find a T and a

with the property that It v is in NT.5(u) then IbWu) - b(vli ' t. But we can choose ua and

v so that v(I) - u(i) has a constant magnitude less than 61T. sd ALn algebraic si•n that
is always equal to the sipi of Ljir); then v to in N T.|u), but the difference between hlu)

and )Ll') is Udinite.

Nlow suppose that h contalns an t.,nle of value A (i.e.. A Is the integrsa of the

impulse) at vo, Choose c '*em than 12ARI and try to find a corresponding T &M S.

But if we choose v and m so that their values are equal except an a snmal interval that

contains TO& we can have v in NT, 61u) by making thie interval small enough and still
have I"1j) - V.r a)) a ZR. with the result that jh(u) - h(v)) - ZARI i - t. A similar argu-

ment holds whenever the impulse response is absolutely.' integrable, but not Lebeeguge

integrable. since in that case the indefinite integral of the impulse response is not abso.

lutely continuous.

Now suppose that the impulse response h is Lebesgue integrable. We prove that t1
is a continuous functional. We consider the domain of the functic-nal to be PRI(R) for any

chosen R, snd choose any c > 0. Let p s (/4R. Now construct a step-tnctloat hp - a
real function whose value is constant on each of n bounded intervals a"n is aero outside

them - so that

J h jh(t) -h(vrI~ d-e P (6)

The existence of such a otep-function can be proved from the f4rndamental defuntitona of

tne Lebesgue integral; it is obvious it h is continuous. There is a number M with the

property thakI h h(v)t 4M for all v. and a number T with the property that h (v) a0 for
aU' i - T. Let 6 a u/6&xM.

Let v be in NTS(u) for these valuofl of T and 6. Then for a"y ne of the n inter.

vales, say a 4 v 4 b, we have

V-b U01j di - hp(,) v(-) di u h (0)[(0) - r,•r)] d,

(7)

46 M~b tu(Z)-vjT)|dil 4 ZM6 w /3nI

Since there ore n Intervals.

• . I~pb M - jp(lvj 4 4[/3 e

Maso, since U -a bounded and h p approximate* h,

13
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50tht u w pas 110rl 4 .p to i)t

so tha.t an U Pass from1[%1t t b to tov) the changes aem all AUa and

11(u) - b(v)l C E/4 * 4/S, 4/4 < (10)

and the continuity of 11 s piuvd.

We turA row to proving the statemnt that te pace PrW(R) to •omIt in the 1RT

topology. The proof is actcoplished by redutetb ad absurdum; we assofe that the space

is not compact and derive two Pontradictory conclusions.

We begin by constructing a special set oa I--.ctians vn. k in the qse PBIIR). . ne set

of funcations vn. k for & gmen n is constructed by 4 .- dWing the tnterval C C T C Zn into 2 n

subintervals of length a".; the value of each Iuntin %n. k in constainsta each subntervasl

and equal to either R or -R. and is zero far v > 1n. For each n. Uw W-A-x k will there-

fore run from I to 272A. &nce the number of theae functions for each a is fiite. all

these functions, for al n. can be arranged in an infinte seqoence wn order of Increasirng a.
With each v1 k we associate the particuýar etighborhood N;(v,. .) a K vf l)def-nea

by T Zand & a 2 1 R. It will now be abeun that for any n the c•-eoction of neigh-

borhoods N *(Vnk) covers POI(R). This is equivalent to showing that fr any u in PRi(R)

and for any integer n we can construct a f&=ction vn In such a way that the mag•l-

rude of

E(X) =j v.IM-utn)I dr fill

is less thar 21-n R for every a in .%he ntervya 0 - z . Zn. We cow such a function

vnk, starting from r a 0. by the foilcwtng procedure. Suppose that v 1-. has been

determined on the interva: 0 6 v 0* o We sbal decide whether the va of vn,k a to

be R or -R on the lnterval v 0 's < * 6 "* Accoriing to our io. e(-)wlU ether

Increase or decrease monotonuvally on this interval to a val~e

E (o. -/ . E(v0 ) "ti-eltUI) di " i (IZ)

Sinice

E(T0 ) -J UlT) C.1 < Z R * .'"R 3 - Z-R (13)

at least one of these alternatives w Ll uke dh magrutude of E (0.Z4) less than 2 .

SAnce the agniwtude of Eli 0 ) is also less than Z 9nR, and E %a eneotonic "is

14

S!a



i

uterval. the same bound holds eveiywhere on the uterval. We can eo ttinue this c:n.
structtan over the entire length of the Interval 0 -4 v 4 Z". aMW prove that for any n the

cal ,ection of N (vno 0 covers PSH(K).

Now suppose that for each u in P81(R) wt specify a neighborhood N'(u); then the

clolection of ait N1(u) covers PM1(R). and. since we asseu - that I RI1t: Is not camp•ct,

we assume that these N'Ju) have oeei, so chosen that no futite subcollection of these

neghtborhoods covers PBI(R). We can prove at the outset that there is a eountable sub.
collection that covers P81(R) - that is. a collectimc that can be ordered in a sequence.

For eakch ui, N-4 , NT. aj(u) for some T and G. Choose n so large that n > T and
ZIn < A6/Z. There Is a v •ah the property that N*(v contains u. and thia (Vk)

n. k * ft. Nkn.tIs contained in N'(u). Thus. -'signing sonit N (vn.dk to evtury u, we obtain a subcoUeic.

tion of the infinte sequence of N (vn. k). This subcoUecttm -tivers P131(R) and can be

arranged in a sequence. and each neighborhood is contatned in at least one N4(u). For
each. pick onc of the N'1u) that contains It. We thus obtain a sequence N'(um). m a .2,....
which covers PBI(R).

Now choose mr a I. No finite zollection of N1(u) covers IPJ(R). so there is some

function w i n PMI3R) that is not in N'4uI); out, s.nce the collection of IN'(uI) covers

Pllli). there is an w with the property that f'({umz) contains w,. Contider next the
coliection of N'(uM.). m a . In. . This collection does not cover Pll(R). sto there

is a w2 that is not in any of these neighborhoods, but tnere is an m 3 with the property
that wz is in K'lum3). Proceed, in this manner. to c•onstruct an infinite sequence of w1*

with the property that no finite collection of the neighborhoods NO(uIn) contains more than

a finite number of ýhem. A
We shall now contradict this conclusion by proving that for any sequence of functions

w. in PBL(R) there is at least one neighborhood KN(um) that contains an inf 4 iite number of

SConvider jie coUtction of N(v n.k) for n a 2. This collection covers PBI(R) ar."Wn•h

contains a finite number of neighborhonds, so that at least one of them, which we shall

call Nc(v ), contains an infinity of wi. If we consider only the wi that arc containet! in
NeIV.), the coll.ection of .'4*v n.k) for n a 3 must contain at least one N*(v 3 ) that contains

an Inefirty of these w. I We proceed, in this way. to cnstroci a sequence of neighbor.
hoods N* v•). each of which contains an infinity of w1, .Inluding any wi that is coatained

in any N Iv1) that follows it in the sequence.
We now define the functions V .

Vj 44 - vf(?) dtT4)

S- It can be shown tUat for every x the sequence of numbers V (40 forms a convergent

sequence, so these functions V have a limit function Vo. It car. also bt shown that V0j 0
to absolutely continuous, and that the magnitude of its derivativc does not exceed R. so

there is a funci1"n vo in PMI3(R) with the property tht

Sis
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VoIR) v 4 ,) t ow 1)

It will be seen that every aeigahborbod atvs 4 t am iaf•wty at wl. Sw thate I

at lemst one N' ) thatI contains vo. mod vm b ood that c•ntains v a cntai a

"e•eghortood of v. the NO(u.,) )cma--,, an wd.z of -e. Ths" satoment cntradicta
0fpreYw coccluaaa. The asi"apti• •that PU3R) is a* co.pwct has led to a cot.

tradicuos. &ad ie monclude that PBI(Ri is t

Z.6 HYSTERf.S

Hysteresis is ofttenm entioned as a typwcAl pkweum~m of nocnjiear systefte. Exam.
&nation of methodo of approximate repreivntum of -1rear systemas tea", to a general
impre&*Aon that these methods kil wbm hblNuwm.s occurs. Horever. a Ieesral defint-
Uos of bysteresis In necessary before this umpesw can be proumoted to the stat" of a
conclusion. Such a defuuiton will be oroposed w ths -ecuon. It wiU thes be show• that

Byucmrns that exhibit the pbenomenon of hysteress are wt conLtnu•ur. in t%*asenae in
which contnu•uty was defuwd in section Z.4.

The phenomenon of hysteresis is uaay • in terms of a hysteresis loop.

7 ..
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Fig. 1. Hysteresis oo~ps. (a) k~ bwtervis. (b) With kvsteresis.
C !fc) Two systems wath bveser~sasa. (d) Sam of t0& two 575ý
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A system that exhibit$ hysteresis is contrasted with a Ovaten-. in which the instantanouw
value of the output, y. 1t u•iquely determined by the Instantaneous value of the input, it.

as in Fig. Ia. This tSa typical no-maemory system.

A system with hysteresis Is then considered as one that. for a given value of the

input. may have one of several different output values. The system is. at any snto. in

one of severea stat!s. the state depending not only on the value of the input, but also on

previous states of the system; the state depends, however, only upon the order, and not

upon the time. in which these previous statss were passed through. I% graph repre.

sentLng such a system Is shown In Fig. lb. (For the *ea of etimpLicity, the sides af the

loop are made vertical.) When x changes. y. if the graph Indirates more than one pos.

sible value, assumes the value nearest to the value it had most recently. The verUcal,

parts of toe loop can therefore be traversed only in the Indicated direction.

In the system of Fig. lb the Mtate uf the system can be determined from the Input

and output values, but this is not always true. Consider the sy-tem of Fig. Id. which

is formed from the two systems of Fig. Ic by appiying the *ams input to each. and adding
the outputs. If the two loop,, of Fig. Ic were of the same height, points A and Al of

Fig. Id would Indicate the same input and the same output, but would represent different

states.

In such simple cases as these, we can say that the output of a hysteretic system
depends on its past history, whereas the output of a nonhysteret-c system doep int. But

thL statement is not sufficient in a general context, when C" tput of a nonh..steretic r
sys-em (e.g., a linear @yst-m) also depends on the past of the input. To define hyster.

esis for general timr.e-invariant systems, we use two conditions that may be deduced

from the graphs of Figs. lb and Id, but are meaningful also in a general context.

In a hysteretic system It is possible, first, to specify two inputs, different for t < 0
but equal for t > 0, for which the difference between the corresponding outputs does not
converge to zero as t - a. Second, it Is possible to specify an input for t > 0 in such a
way that for any two inputs, arbitrarily different for t -C 0 but with the specified form for

t > 0, the difference between the corresl inding outputs always converges to zero as
t - wn. (The condition cf convergence toward zero is used. instead of equality to sero,

to allow for dependence of the output on the finitely remote past of the Input.)
Any system that is con~tnuous(R) is an example of a system that does not satisfy the

first condition, since, for any 4. we specify T as in th. def"inton in section 2.4, and

the outputs for t > T must differ by less Utan £. An example of a system that satisfies

the first condition, but not the second, is an ideal Ii.ear integrator.

We can prove, by using the principle of superposition, that a Linear system must be

nonhysteret.c. If two inputs are different for t < 0 and both are zero for t • 0, then

adding to each input a specified component for t ) 0 can orly add to each output a com.

ponent that is the same for both outputs, and cannot change the difference between the

outputs. Hence if a linear system satisfies the first condition for hysteresis, it cannot

satisfy the second.

I? 1
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A system capable of subharmonic response to a sLnusoidal pinp ms-tbies the first

condition or hysteresis, since two inputs that are equal for t > 0 my Vve rise to sub-

harmonic outputs in different phase. i, In such a system, the osd* tends to zero when

the input btcomes and remains zero. the second condition is satudwed and the system ts

hyt teretic.

Since a hysteretic system to not continuous, it cannot be ai: a..d arbitrarily

cloiu.ly, in the uniform topology, by continuous systems. llowever. for some hysteretic

syutems and some input ensembles, it may be possible to find canmua•oum systems that

approximate the output with arbitrsrily unall error except for an arbitrarily smafl prob.

ability of large error. The reason Is that the seco id condition iu the definition of hys-

teresis implies that events can occur In Mhe input that make the system forget what

happened before them. For some ensembles and inputs there can be a positive probability

of such an event occurring in a bounded time interval. and this probability will approach

unity as the length of the interval increases; thus a system who#e ok•t;ut depends efTec-

tively on a finite portion of the past of the inout may be made to approximate the output

with arbitrarily small probability of large error.

2.7 SUMMARY

The principa. ideas and conclusions are outlined in this section. These ideas form

the foundation of the methods of representation that will be discussed iA subsequent

sections.

The input to a syst.rn in represented by a n..j fiction f; the valu of the input .. t

time t is f(t). The o,.tput is similarly represented by a real function S. If f is Lebeague

measurable, and Ift)I * R for all t. then f is said to be boundediR).

A nonlinear system 1 is a function. It assigns to every input f (zn a specified set)

a corresponding output g a tj(f).

A time-invariant system f1 can be represented by a funct~ional b. The value of the

o•tput at time t is determined from the function ut. defined by uI(?) a flt-). v a, 0. then

h(ut) a g(t). If f is bou-dedlR), then u t Is an element of the set of funetions called POI(R).

A topology is a scheme of approximation criteria; a neighbort!od as a set of approxi.

m.atlons satisfying some criterion. On the space PB1(R) we define the RTI topology by

the conditon that, for T > 0. 6 > 0. the function v is in the neightiorbood NT.S(u) o0 the

function u it and only if

whenever 0 4 a dG T.

A time.invariant system H, considered only for inputs that are bounded(R). to si"d

to be cona•nuous(R) if, for any c > 0, there exist T > 0. 6 > 0 (T sifficientiy large, i

sufficiently small) such that if u and v are in PBI(R) and v is in NT,6(u). then

I11") -_hlv)j < 4.

II



It t o. continuous(R), then for any i 3 0 there is a finite set of fwicutio in PIIn(R)

and a neiRhiorhood NT.6 uI) of each u,, such that every u In PBI(R) in in at least oie of

these ngatlhbortoOds, .r.d if u is in NT.6(uI). then I hiu) - 1(u,)I < C.

If 11 is continuous(ilt), then for any i ), 0 there is a polynomial system Lf" consistLng

of a sum nof constant, a linear system with Lebeague Integrable imnpulve response, and

products of such linear systems, such that,, for any Input that is bounded(R), the values

of the outputs of j and never differ by more than c.

1
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ill. A DI(;rrAI, APPARATUS

"rtI'.IORY

Al t-n illustration of some of the results of Section U. a description arn dscusloton
or a hypothetical apparatus for the analysis and synthesis of nonlinear systems wU be

presented. The apparatus i. designed for the laborator• exAminataomn of ant uo~twt Sys.$
Wttr and the synthesis of an approximately equivalent system. It has mot been built

because it does not appear to be pracucal, but some of its principles are interesting.
The apparatus is based on the approximate representation of funimtials by nmeans

of tables. of values. To represent a functional h_ we tabulate the values of hju) for a

finite number of real funktions u. The functions for which values are tabulated in this
appairatus are similar to the func'tons vnfk used in the proof of a theorem ir Section U.

They are cuntitructed by quantizing t.me in intervals of equal length q and by r"tLng the

value of the function conatant, and equal to either Ft or -R. or each interval. We shall

call such functions quantized functions. They can be prarseited as sequences of binary
uynkhols. I for yalue R and 0 for -R.

Given any input funqtion f that is bounded(P), we generate a quantized funeuon f( to
iipproxiimate it In thc sense that jJ n(t) - f'(t)j dt im. -nade as small as possible for

every A and B. The value of f( on each q.inte-val must obviously be determined

later than the beginning of that interval, without any knowledge of the values f will nave
on that interval. We may use a feedbacIk method, -nd the error of approxtmation can be

determined by means of an integrator. The input to the integrator will be I - f'. and

the output will be the error signal e.

ett) J [flx) - f*(x)I dx 117)

and, at the beginning of each q.interval, we make the value of f equal to R on that

interval if ect) is positive, and equal to -ft if e(t) is negative; it elt) a 0 we make an arbi.
trary choice.

On an interval of length q, f will contribute a change of magritude qR to the value

of e. with ,tigi opp)ppose to the stig of e at the beginiung of the interval. whereib f will
contribule an utpredictable change of mangitude that does not exceed qR. so that the

vailue uf e(l) wilt b.. kept within the bounds r.. tZqR. Then

I t f t- f(t) d t (A) -- e(B) 1 4qR (l,)

This error is attribut.able partly to quantization and partly to the delay itn using the

vaijes of f to determnie the values of f0. In deriving from l0 An approxin atton to u.
it is therefore oistrablc to make use of the f ict that f0 can be pree:icted up to the en,' of

the prebent interval. We define u'(C| s f e(t -* ., w•.cre t, ib the end .-f he q-intetr-'A

__-
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c* onmt~ t. This mens" lat at(-) is contant intervals of letigth q, startuP4 front

V a - 0. and the values of as tbe lotarvals are the values already determumd for Is

bepgiswwith the moot teeml. Tben for all t &W all a.

-w G~ a system 11 that is cmnmbAoms(R). and given c as the desired kt~-ram"e for the

outpt. determine T and 6 to SmaUsy the contianuty definition, and lei q a 6/4R. Let a

be the smallest integer that is not less taMn T/q (:.e., the numhor or intervals of length
q neeted to cover an interval of length T); ui need 1P defined only on the first n inter.

vale of learth q, and may be tat•es as zero fcr* > aq. Then u* Is in N (T.6Qt). and
therefore lb(u•) - tu'1uI C C.

The functon u," can be repreented as a a wence of n binary digits. It must be one

of 2a possible functions 0. each of wbach is represented by a binary nt-mber. For each

number we tabu•late h(u*).

In m14An cases it is not practicAl to deternuae in advance the appropriate T and 6
for a•L- (, t."'- such cases, a and q can be chosen arbitrarily, and if the resULt.ng

error turns out oe too Large. it can always be made snruller by chaosig q smaller
and aq 1ure.•- .j.

3. z cOnrRUCTION AN1D OPCRAT11OI

Two devices are conceived for the implementation of this theory. &A analysis device

(for zamining a system in the laboratory) and a synthesis device. The syntheois device

would cornsist of two parts, one a quantizer to determine u•, and the other a storage

device that contains previously determin.±d va•les of h(u*) and produces, at every time

t, the v-alue b' -. The analysis device generates quantized inputs f. so that. at certain

times t. ut h2s the form of uO. aJ records the values of the outpu at these tuMts es

F'pmr 2 illustra es the qustazer. The interval length q is determited by the Ire.
qiser.c a' -.. e pLUse generator. and a is the number of stages in the wzaft register. The

chilt , i. z.%'r holdS, at ail neks, the Last a dzot& of f '. and delx.-ers the•e, as a, to
th- b.•. -.nt. whJch, in tu.-t, delivers the output. The curves in Fig. 2 were C.alcu.

lated .... cate typical operat,,n of te. tj&ntzer.

Thve an ysis device const•as of two parts., a generator that generates qua;aitd inputs

and a srt:ao. unit to record " auput %tilies. In usming u device, it is not necoessry

to wait for the system. %tat is being tested to return to its rest state before every

seue-ue Gf n d&g. *s f input because the system is sensitve. within the specified toler-

ance. only to the last n d4 ,pLs of aný long input seqience. We can therefore use a long

so'qv-ee of digits with the prcperTy unt everv possible sequence of a digits i5s contained

in it. r example, the seepsrce 01100 contains the two-digit groups , 1. II, h., 00 in

that order; similarly the seqiurce 0100011101 cUtauns all possible eqi,-.Jes of three

I ,-
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Fig~ . Quantizer.

digits. Alternatively, we can use a random sequence of digits; the probability is wauty

Iha% a ra ndom sequence will eventually include alt possible sequences of length n. A
rando sequence might bit generated by Using the quantizcr with a whiwenoise input.

The uaie of randomn inputs - qgest& the application of the apparatus to the sy-nthesis

of fiiters. according to statistical criteria Je.g.. for an ensemble of inputs consisting of

a signal Lvrrupled by tnoise in order to mimize the mean-squar, difference between
the signal and lte~ outp--tt). The funciluns ii, (Whichi represe.nt the past cof the input) wi~l.l

in generial. horni a probability ensemble. iind for each ui1 the value dlit of the desired

output. of which the output gtI of the system is to be an estimate. will have a couuditional
b tibution. T ,', optimum es:,hat can be derived byore of many posai

crit.crj front this conditional distribueon. I many cases we can apph stmale &.e dil-

trhutinn of d(l) econihtioned oti ue by the distributbon of dit) cot)Jitiont-ý >n the quantized

Theu.red urn to put W qm.ght therefore use a long sample of the input and the

deoin ed output, put tor input into the quantizer, and for each ut rh ord samples of the

ourresponulrg valuest of the .losir" ott-4!. If the sample is large enough, we obtain

""dan. sant.les (if the deairird output for each u*. We coriniate the conditional distribution

ZZ
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frh•m mwmO . Compute e espamum eettUate of the desmred outpat from this dis.
-bstuom. %- vc e th op••-m, tosr te as Ikt*). For s.--.e csitrati'm criteria there

may be ewrmrr w•ys to Gern a* opaum cetu..te from the amples; the process

3.3 EXAMPLE

We - cakickte. for a wm -pie syst• . the requirements an n and q for syn-

_ o toe m by means of the opperat-s described in the preceding secUon. Can-
sader the Lowar syste with regey respom, /( ). that is. with implse 'espnmse
a&e Th- isas &a WpaSS f•ter with unity low-trquemy gim.

For tis sys""k.

-&*t- dr (20)

Te sysem is aLo.' s(fR) tar overy R. Suppose v is in NTA tu). Then whenever
0 9x 'T. we tkw

4 V

,,a,1e (U•,) - vi-))j0  j -"* ;, - '() d,,zI e'

< aI * ZR •"•T (22Z)

is wbi we hew mtser-sd ty ax1m. tusi

dii

v") du" dv. Vf) - UT(, d+ (IVT,

N-_l,. am• ae.octd £ as tie mIer'ance a'a the outpat,, we clmoee T sad Ie• that

and •t q T aa T/ so &t-.

"C --- e (UT - V() +4q &2 f, V(,)

et adwivg to muu41mjz tOe 6m-lrae ta t hs output. w oe.. to miandGe j), bat

23
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%ime hornds are easy to obtain. T must be greater than (I/a) log (IR/A). ad q Must
be less than f/4aR; hence, n a T/q must be greater than (4R/) log (IR/A). which give.
a lower bou d on n (log v natural logarithm). 'We obtain an upper bound an the minimuM

n bý finding the n that is requtred if we arbitrarily choose T and & so that a6 a ZRe"-T.

We iAbt.ain T a II/&) Iog (4n/c), q a c/SaR, and a ! ISR/A) log (4R/A).

U we set a toler&akce of 10 per cent (R/t a 10). then I10 < n < 300. approximntely.

and the minimum number of stored values required is between 1036 and 1090.

3.4 CONCLUSIONS

For R/: a 10, a set of I I numbers can be so determined that the output will always
be within t of at least one of them. The requirement of 1036 stored values seems,

therefore, to imply a very inefficient scheme of synthesis. Part of this la.ge storage

requirement arises from the fact that many widely different functions u will have the

same h(u), and tWs grouping, since it depends on the system, cannot be built into the

apparatus w advance. The saene value of !(u) therefore must be stored separately for

many dtflerent functions u. However, there are stUl several sources of inefficiency

that might be corrected.

The neficiency of the apparatus srises parly from the fact that u is derived from

a quanti•ed approximation to f. This impotes certain constraints on the qiantizd

aPp- ±-Ioa i.6 to ut. It can be shown that if the quantized approximation u* Ia derived

directly from u,. so that these constraints are not imposed, we can construct for every

u in PB&.tI) a 0, with the property that

I u - d,1 ;qR (26)

instead of 4qR. Such a u can be constructed by using a litrear filters, of which

the kt filter, k a 1 ..... n, has an isnpulee response that is I from zero to rn
and zero thereafter, and by quantizing the output of each filter. Then q can be

chosen to be four times as large for the same T and 6. and, in the example of
9 2section 3. 3, the mininum number of stored values will be between 10 ad ISZW1

jAlutough the quantized output of %he kth filter has k + I possible values, and hence
?n(fn4l1)l conceivable combinations of values, only Z'n of these combinations are

possible If the ii.put is bounded(R).1

There is another sot.rc of inefficiency that might be removed. Although data on the

past of the input have been taken only from a boun4ed interval of the recent past, as
much data have been taken from the more remote parts of this interval as from tn. =ore

recent parts, and this # unnecessary. We can correct this by miaking the q.Intervals

longer for the remote past than for the racent past. This can be done simply by omiting

some of the filters from the set described. This would effect a further substanual

24
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reductoi in the umber ot stoivd values that to rqured.

The apparatus that • *sa evolved. cuwtxst&g of linear filters Vwit quantised

otputs. is practicalky smar to. although different in derivation from. the appa-

rat" propo3eJ bI Bse MI-

4A.
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IV. ANALYTIC SYSTEMS

4.1 TKEORY

One of the conclusions of Section U was that tmy rystem that is continuous|R) can be

approxLiated arbitrarily closely by a polynomial system constructed from linear sys.

tems whose inpulse responses are Lebesgue integrable, This polynomial system is a
asm of a constant, a linear system, and products of linear systems.

The output ..: t constant system can be represented by a fixed real number; the out.
put of a linear system can be represented by means of a convolution Integral. For a

product of linear systems, whose impulse response functions are kIt kZ . . . . I we havea_ nki(iO 1 f(t-v 1 ) d.

where f represents the Input and g the output. Or, If we write

hmn(r ..... on) a kI(rI) k 2(y) ... kn(n) (28)

we have

5(t) uf' ... hi(0 1.. ...f1 ) At - -r,) dvI...di. (29)

This is. at least in a restricted sense, a system of nth deglee, since multiplying " '
the input by a constint A results in multiplying the output by An. The function hn (which {
is Lebesgue integrable) wUl be called the system function.

The sum of two nth degree systems to an nth degree system whose system function
Is the sum of the syntern functions of the summands. Therefore, the representaUon of

a polynomial system requires only one term of each degree:

a(t) eho # hi(') f(- ?) d T +.ff h 2 (-ir vZ) f(t - v) f(t - rZ) d4id

Z.. . hNI... N) f(t- v I)dlr...drN (30)

Any continuous system can be approximated arbitrarily closely in this form.

The domaL .. 'cated in these Integrals has been chosen as .•-w. ) so that physically
unre&lis.able systems can also be represented. For a physic4iy reahlsable system, each

system function hn will have the vatue zero whenever any of its argumnents is negative,

and the integrals can then be taken on (0, a).
For convenience in certain computations, we define the system transforms H. by

i ..... s) ... r h(I.. )exP' y-...-s d,1...dva (31) 0

n nj n I
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(in par-ticlar. U. a he,. Since the system function: are absolutely intgrable, thee
transforms c"n be defined as Fourier transforms. with a, a Jwt. aind an such they will

always be well defined. Alteriative!y. if the system is physically realimabla, they cant
be defined as L-plice transforms, with sa ta 0. If the system transforms are known, the

system functiona can be dpermined (at least theoretica&Uy).

The scc3 if this furmula wiU be extended in two ways. First. we form a power

t trie. by allowing an infinity of terms; second, we relax the condition of Loebtsgue into.

grability to a condition of absolute integrability that permits impulses in the system func-

tions. By using impulses, we can approximate some no-memory systems, even though

such systems are never continuous(R).

Having extended the scope of the formula, we must impose some restricUons on the

system functions in order to guarsrtee that the formula will specify a unique output for

every input in a well-defined set. We define the norms of the system funct~ons by

Ihn f ... f ha I, I.... *'n)l d-r...dwn (3n)

(in parUcular. |hol a 1hol). We then require that all these norms be finhte and that the

power series
.1

Sxn 'N,)

have a nonzero radius of convergence RH. Then, if the input is bounzed(R) for any R

less than RM, all the integrals wLU converge absolutely, the series will converge abso-

lutely, and the output will be bounded(DH(R)); that is. the value of the ,'atput wUl never

have magnitude greater than BM(R). The function 8H wiLl be t .lied the bound function

of the system H, and RH will be caUed the radius of convurgence of the system. A sys-
tom that can be exactly represented in this form, with these conditions, will be catiod

arn aMltyUc system.

The system fimctinns of an analytic sys'em are not unique; in fact, any h, can be

altered by permuting its arguments ' .I" without altering the system. However,

it can be shown that unIque system functions are obtained untler the condition that the

system functions be symmetric, i.e., that they be unaltered by any permutation of their
arguments. If a system is specified with une vnmetric system functions, we can replace

each systemn function by the arithmetic mean of the functions obtained by all possible

permutations of its arguments, sand the resulting system functions will ibe symmetric

and wilt define the sean@ system.

It can be shown, by using the concept of multiinear functions, that the analytic eye.

tern is a generalization of the power series (cf. Hille (14)). A function f of n arguments

"- .-. • is called a eywu3metric n.linear function if It is symmetric and if it is linear in each argu.

ment. We are interested in two cases, the familiar case in which the arguments are

:'". A
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real numbers, and the case in which the arguments are real fractions. Any n-linear

function of n real numbers x V % . ., "Rn can be written Ut the form

ff51 ...... xn) a AxIxz ... Xn (34)

where A is a fixed number. The function IJ. defined by i a l.*n( .. f|, where

g f. f. I are all real fktnctinns and

RIO) h. "" h ( -I . ... I I n ) f 1 fili l - i) d r I-.. .d -rn 5

where h ias a real-valued symmetric function of n real variables, Is also a symznetric
n-Linear function. Now define a homogene- a function of nth degree as a function of a
single arruisent tt,:t. can be derived krot •. &&y.aneti ic n-linear function by setting aU
the arguments equal: xI sva... ax, % x, or fa a a a. f a f; define a power
series as an infinite summation of homogeneous functions. With real-number arguments,

we obtnm th( familiar power series; from the n-linear function with r-i al-function argu.
.t - we derive the formula that we have used to represent analytic systems.

4. . EXAMPLES

Two kinds o. examples are to be described here; general analytic systems with par..
ticular kinds of inputs, and particular kinds of analytic systems considered without
restriction on the input (except boundedness).

In the study of linear systems, partcular e phasis id placed on two kinds of inputs:

impulses, which place in evid-nce the physical significance of the Impulse response,
and sinusoids (or exponentials). 'which perform a like service for the transform of the

impulse response. Sums of impulses, or sums of sinusoids, are trivially accounted

for by superposition; but superposition does not hold in nonlinear systems.
Consider an analytic system whose Input !'j a sum of imr',Ises. Strictly. this Is not

permnisuible, because a well-defined output is guaranteed only for bounded inputs. How.
ever. a formal result cata be obtained, and, since Laboratory approximations to impulses

are really bounded pulses, the format result has a practical interpretation. For the
sake of simplicity, we consider ait analytic system with only one term, i.e., all the sys.
tern fun•tions except one are zero; a general analytic system is a sumron-such systems.

Let the input f to su,:h a system bc

M

Nth

i ~~~f~t)a ~,, AmSft -TinJ3e

"that is, a sum of M impulses, with the mth impulse having the value Am and

occurring at tune Tm, Then the output g or the system is given by

28
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,,. IA A M.... A M h -n,(t ..... Tm,,,

m i ta m nu

Each permutauon of every combination of n impulses (not necessarily a different

impulscs) chosen from the iPlput thus gives & contribution to the output; this output is

equal to the product of the values of these impulses with ain appropriate value of the sys.
tern function. The integrals that appear in the general expression for the output have

been, in effect, replaced by sums. If we consider & general input as approxzimable by

a sum of impulses, then the output at any time is a weighted sumn of products of past

values of the input, the weighting being determiied by the system functions. The system

functions of an analytic system might therefore be considered as its impulse response
functions.

Now suppose the inLput is a sum or sumasoids, or. since a sinusoid can be expressed

as a sum of complex exponential., suppose the input is a sum of expor~entials. Thus

f(t) r A ezp(Smt) 038)f:t)
Mal

l'hen the output g of the system is given by t
M M

git). a A Am... Amltm .

(39)

Each permutation of every combination of r. exponentiak. Inot necessarily:n different
exponental.s) chosen from the input gives a contribution to the output that is an exponen. A
tial with a complex frequency equal to the sun-, of 'he frequencies uf these exponentIals.

and vi &An amplitude that is equal to the product of the amplitudes of these exponettiaSs
and an approprmate valu2j of the system transform. Since a sinusoid is a sum of two

complex exponentials, each with frequency equal to the rnegauve of the other, these

contributions account for the harmonics, sum frequencies, and dJference frequencies
that we know occur in nonlinear systems. The system transform gives, in terms of the

magnitude& and phases of the inpu" sinusoids, the magnitude and phase of each sinusoid

In the output. The system tranalorms might therefore be considered as frequency-

response functions.

We now consider some special types of analytic systems. First, we consider the

identity system, whose output always equals its Input. Wc shall represent this system

by 1. This is a Linear no.memory system. AU its system functions are zero except

the first, it. which is a unit impulse; hence. all its system transforms are zero except

the first, I (a) a 1.

II



Next, we consider two types of systems that are easy to deal with by methods that

are already in wide use. linear systems and no.nemnory systems. A linear system is

analytic, with infinite radium of convergence. it its impulse response is absolJtely inte.

grable; tWue impulse response is then its first system function, and all the other system

functions are sero. The first aystem transform ts the frequency.response function of

the linear system, and all other system transforms are zero. Conversely, an analytuc

system is linear if all its system functions (or system transforms) are zero except the

first.

A no-memory system is analytic if the value of the output to given in terms of the

value of the input by a power nseteo, &nd its radius of convergence is the radius of con.

verg-.nce of this power series. It

g(t) Z an(f(t))" (40)
nmO

tCien the system twctions are all products of Impulses.

hn(rlI..-.rn) a a n&(1) 6()..z &1 1) (41)

which indicates that the value of the output at any time is independent of past vwlues of

the input. Tht system transforms are all constants.

Hn(5ia* I .. n) • n f4Zg!

which indicates that if the input is a sum of sinusoids, the amplitude and phase of the
output winusoide are independent of the frequencies of the input sinusoids. Conversely.

it the system trunsforms of an analytic system are all constants, the system is a no.

memory system.

4.3 COMBINATIONS OF ANALYTIC SYSTEMS

BH -ause engineering, at the practical level, consists Largely of putting things together
and making them work, analysis and synthesis have become Important parts of the theory

of linear systems, and they may be expected to be important in the theory of nonlinear
systems as well. Analysi, is generally easier than synthesis, and It may be that the
best way to develop a good theory of synthesis ts to develop first a good theory of anialy.

sis. An approach to the analysis vf nonlinear systems is proposed in thls section &Lnd

elaborated in subsequent sections.

In the fundamental approach we begin with analytic systems mnd interconnect them in

several ways, with the object of determining when the result of this interconnectIon con.

stitutes an analytic system. and, whenever it does. what it.; system functions or system

"tsins!orms are. Many practical systems can be described as combintions of linear and
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* no-memory Systems. which can be easily reprosvated in analytic form. For such sa"-

tems, this approach may be. for some purpose.. •a adequate method of a&naysLa. We

begin with some simple forms of interrvraiCtion: sum*. products. and cascade c:.

bmattohnJ.

The sum U J* of two systems fi and K is constructed b• te-ug their inputs to"tber.

so that the same input is applied to both, and adding their outputs. Thus. g * H i K d

"and only it. for every input I. girf a tff * Kf).
If the systems fl and jK are anal)zic. a trivial caltculation gives the result that Ohe

system functions of 9 are

4I . n) a hn(?I. . . n
) # knitI ...... ) (r) a

,4 Sand the system transforms of Q are

s 1, an) a H(s.s) .441

* But these results, are not surficient to show that 2 is analytic. since We 61... have to

show the existence of a bound function and a novaero radius of convei ,cnce. However,

this is not difficult. It follows from Eq. 43 that

f KI 'lh.!j + kl (0s)

and frcrm this bound on tie norms of the my fictions of 3 we can determine an

upper bound on %he bound functirn.

"B" Qel) 'G aHlX) + S.x) 446)

A and a lower bound on the radius of convergence.

R amin jRH, RK)41

Note that if UJ is a system of degree N (i. e., all system functions after the Nth are

zero), and • is a system of degree M. then the degree of q will not exceed the larger

of the two numbers N.M.

•~ Almost as earily trett led is the produt H.K of vt-o systems, constructed by lying the

inputs together and multiplying the outputs: Q(f)- HMfl KSfl. It Ii and K are a.a.lytc. a

straightforward calculation of the output Of their product, after terms of like deg"e are

"collected, yieldsf n
................ ,. n) o Z h 1 (r 3I..... ,i) kn~6 (t 1*...................(1481

is0
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a o .. ... . . .. . ...... (49

From this. we determine lt

Igo

from which it follows tb&A

and

RQ rnin (RJ.RH (5Z)

It JJ Is a system of deg-ee N. and • is a system •f degree M. them the 6egree of

will not exceed N o M.

I zie cascade combination H * K of two sastecas 14 and K_ is formed by applying the

input to K, using the ouput of K as the input to _P., and takirg the output fr-onm H. Then

QH K if and vdy Lt. for every input f. QMlu H(K(f)). Note thatH* Kand k e Hale

not the same, although n special cases (e.g.. Linear systems) they are equivalent. Ii
The system furr tions and s vmem Iranst.r~mn of Q are given b.v ftrmitLas that are

derived, as in the product case. by a straightforward computaton of the output. in which

terms of like deg, ee are tben coalected. These formoulas are rather complhcated in the

general case, although hetv can be expressed fairly simply in certain almost general

cases.
The first step in the calculatimn of % or Qn is to determine, for every positive inte-

ger i. all possible peranuutitr of comb, t-iois of i non-negative integers whose aiiM

is n. In each permutation these i i-teger# will be called m .jzlZ.. The sybte,,

function % is given bya ponevoJution -like integral involving h. and km ...... M 'k

Tr. Zn j ...J hi(I... at) t k( . - -... ) dx1 ... dxI

(53)

The order of the subscript indices on the i's is Immnaterial. because permutation of the

, arguments of a system ftcuton does nft change the system it characterizes; hence they

are not indicated. The only important point to remember is that there should be one of

each. from- I through v6 and the v's gh as wel be indesed in the order in which they

.X
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apPear When the k are written in order of increasing 3. T1e secosid summato sag%

in this formula indicates a summlation over the set of permutaums indicated at %be

beginning of the paragraph.

The system transforms Qn are given by

&...-. c is the sum of the m aMrgument- of K In this formula, as in formula 53. the

second sununation is over all permutations of i numbers mj whose sum is n. and the

s-varitbles may be indexed I .... n in any order.

In the general case an infinite surr mation is required for the determination of each
system transforn or syitem function. Hlowev-er, when i Is greater than n. every COM-

binatuion of nai mnust c, ,tain at least one mnJ that is equal to zero. Therefore. ihere are
two apecuLs cases in whirh each I., can be determined as a sum of a finite numtber of

terms: when B is a system of finite degree, and when K. a 0.
In many pract-cal systems it is possible to obtain a descripton in whi.'i the compo-

nenti are analytic systems with zero constant terms. by first solving for the particular

case of zero input to determine the operating poin~tb, and then measuring all variables

with respect to these operating points. 1f botis systems in a cascade combination hare

zero constant terms (i. e.. Ho a KO F 0). then (or the first few system tranaorms of the

cascade combination we obtain F
•o 0

Q04s) a HltS) K1Is) -

Ql(s, 1 ,2 ) a 111(&, 4- &)Kz(*.s 2)4 H 2 sf,1s51.a)Ks(a)KIs) (S)

In analytUc systems. as in linear sys'erns, the solution of the cascade prholaem

Involves integratlon in the time domain, but dot& not involve integration if the solution

is expressed in the frequency domain.

To determ:ine bounds on norms, bound function, and radius of corverg•nce. an she

general case, we obtain

isO

from which it car be shown that

B Q(• , (BBK(X)) $/
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tq ;a mint 'RK selation of DKIz•i (Sol

".'te re"smltant System Swtll not always be awlYuta.•. there might not be any nonsero
ra,'LAs of converget•e if K is greater thA R However. the same conditions that

en&?.*ed that the svstem fumtons arnd yse=m t, •torm4 of aq could be computed by a

finite summation will also ensure the analy•i•cty of %.

If the carortents of a cascade cobinatiuon ar-e oa degree N and M, respectlvely.

the degree o! the resultatt syotem will not exceed NM.

In all cases, sum. product. and cascade, the bowids on the bound functitomn ars

immediately bvtoius if thel are regarded olly a.a bounds on the output. However. the

oundsa r-n the bound functiuos provide more uilormationa than thAi. The cuefficients of

the power-series expanLakci of the bound provide upper bounds, on the norms of the sys.

tern fttuons. Furthermore, the formulas for bomds on the bo,,rd functions and radii

of convergence remain valid it the bound fwmctiots and radii of conmvergence that appear

u.. the formnas are replaced by bounds that have beet obtaised from a previous calcu.

Lation.

The bound functions of combination systems do not have to be computed by power.

series methods; they may be computed graphtical;iy or n~arerical.y. Becauise the system

cacutations mrtn. be performed by calculatina the system f'uncuone or transforms one

at a time. the bound functions provide a useful m .thn,,d for controlling their accurac-

If. for ezamplee. only the first three system ! "-t- t- Z combination system are cal-

culated. % bWand on the error can be obtume.i b, . bitracting from the upper bo-.nd of

its bomnd fuhction the frst three terms of its power-series exparmson. The resulting

function gives, for every R. " upper bound on the magnitude of the error for inpits

that are bounded(R|.

4.4 EXAMPLES OF CA•..ADV SYSTEMS

It may often happen in practice that only one system in a cascade chain Is nonlinear,

and all the others are intear. L such a ciai wmoe fairly simple and easily recognizable

for'ms are obtained for 'he solution.

For a linear r,,stit - !. followed by a nonlinear analytic system 1i (i.e.. for the
rom Q auo n 11.14. we obltan

"..l..... ) a H .. ... ni LI(PI) L/-ts) ... L 1 sI) i5n)

For a nonlinear system foUowed by a linear system (i.e.. for the combination

. .L ii., we Obtai

I . sn)Ll(s ..s.... 2.s,)) (601
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For a nonlinear system II preceded by a linear system L and followed by a Unear

system N |.e.. for *he combination X a K * # e L), we obtain

, I..... ý a- Kl'SI• *..+ . H LIs. L (a61)

In the particular came in which the nonlinear system U Is a no-memory system, so that

each system transform Hn is a constant An. we have

(;(s ..... aSn) a€ A n Kl(sI,.. +on) LJ(4)... Ll I (aA)

This form is so easy to recognize that it can be used for cynthesis, since any

analytic system whose system transforms are of this form must be a cascade

combination of linear ,ystems with one no-memory system, or the eq,,ivalent of

such a combination.

As an illustration of the solution of cascade combiniatlon systems, we consider

an amplitude-modulated radio communication system. We shall suppose that the

carrier and the signal are added In the transmitter-, and pass througkh a nonlinear

no-memory device that acts as a modulat..-. "'le output of the modulator passes

through a radiotrequency amplifier, a propagation lath, and several radiofrequency .

amplifiere in .je receiver, aU of which are represented by a linear narrow-band

filter. Another nonlinear no-memory device acts as a detector, and the output of the

detector then passes through a sequence of audio-frequency devices, represented

by s linear filter.

The modulator will be assumed to be a second-degree system, whose output y in

terms of its input x is given by

y a m x + mzx 2  (6J)

The radiofrequency channel will be assumed to be linear with frequency.response ftunc-

tion R(s). This filter will be assumed tL have zero response at audio frequencies and

at the harmonic& of the carrier. The detector is Another second-degree device, with

output y in terms of input x giv-en by

y v di x+ d2It (641 .

The audio-frequency channel will be assumed to be linear with frequency.response func.

tion A(s), and the rrsput.e, of this channel will be assurned to be zeroai ,ero frequen.cy

and at radio frequencies.

"& -.. The fundamental cascade combination formula is then applied three timee in mucces.

&ion to obtain the system transforms of the complete channel:
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Qo0

QIjo) a midIA(s) MG)

QZIMS e) ma d AlmS÷ + S)R(d Rio + s) + mdZA(i +*sz) R(s)MReI
Z3iL 2~ 13 1 l~z~a ÷ I2 a I3 RaI)I~m

6 . ) a m dmzA4s! + a + a 5) R{i ) K(s } +3
1* M~ 2~ 1 53+) R 1  2

Q4 (sI... .. s4) a mdAl(se 4 a + sa+4 )R(i t s)R(s3 + 4 ) (6S)

and all further system transfu-mu are zero. However, QI and the first term of Q are
zero, since we have assumed that A(s) R(s) a 0, and the two terms of Q, can be combined

by permuting the variables in one of them. The only nonzero system transforms then

become

Q(ý'Al .a) a mZd AIs +÷ 8) R(O•) s2 )

Q 3 (8 1, 82. 1 ZmimZdzA(si + oz 3 ) R(I 1 ) R(GZ+ +3)

Q4 (s 4....s4) *m d2 A(s 1 2 s 3  4)R s1 . Z)R(s3 +S4) (66)

These transforms charafierize the complete channel ao a nonlinear analytic system.

Now suppobe that the input consists of a number of sinuaolds, one at the carrier

(radio) frequency, with exponential components at a a uw, and the rest at audio fre-

quencies, a • ia, 8 "jav and so forth. Then no output will be obtained from Q.,

since the only frequencies in the input for which R(s) Is nonzero c re the positive ani
negative carritr frequencies, whose sun is either zero or twice the carrier frequency.

for both of which A(*, + sZ) Is zero.

A nonzero output is obtained from Q3 only when s a carrier frequency and sa+ M-3

is the sum of a carrier and an audio component, and the two carrier frequencies are of

opposite sign; the sum frequency will then be the audio frequenvy. (For tach au4i'• rom.
ponent there will be four erims: a, either plus or mrnus, and w*'h either .j, or fi as

the audio component.) Therefore Q3 gives the demoduaited auieo output, wilic:h is pro-

portional to the audio Input, the square of the carrier-frequency input. the audio.
frequency gair, the square of the radiofrequency gain, the linear part of the moJi.Ajator.

Sthe second-degree part of the modulator, and the second-degree part of the detectia.

Q gives a nonzero outpit only if both sa + s2 and s3+s4 are sums of audio- and carr er-

"frcquency component., and the sum frequency is the suw of the two audio frequencies.
Hence Q4 given the harmonic and intermodualation distortion components in the output.

These particular results covld also have been obtained by more conventional methods
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by assuming the input and then calculating the resulting signal@ at every point lt the

system. What we have done here is to solve the system as a system before specifying
* what the input is to be.

4.S ANALYTIC FEEDBkCK LOOPS

An electrical network consists of a number of elements connected ýy wires.

4 In many cases, the elements aro all two.termtnal elements, and each element

can be described as a system with one input and one output, by specifying
either the voltage in terms of the current or the current In terms of the volt-

o age. The interconnections are expressed in terms of Kirchhoff's laws, which

"equate to &ero either a sum of voltages or a stam of currents. These relta.

tions can be expressed by a block diagram or signal-flow graph that contains
two kinds of components: systems and summing points. It appears, therefore.

that a theory of nonlinear network analysis might be built up by using only

* two of the three kinds of simple combinatton described in section 4.3, n"mely.

sums and cas*ade combinations.

Such a theory has not yet been developed. In terms of the relation between
systems and functions, as developed in Section 1. this theory would be essen.

tially a theory of implicit systeaas. We might hope for an extension to sys.
tem theory of the fundamental theorem

_______ _[ -cf. Rudin J1511 ic implicit functions.

For the pu.rpe-es. of suggesting the kind
of results that such a theory might offer,

and of giving a special case with its

S Fig. 3. Simple fev.dack loop. addiUve feedback loop0 with analytic "

componento is presented in this section.
Another special case, the Inverse of

an analytic system, wilt be discussed

in section 4.7.

S-Consider the sir=ple feedback loop

-4 illustrated in Fig. 3. This Is not such

* a Special case (as it seems) because,
as Fig. 4 shows. a general feedback

"- loop can be reouced to two cascade
problems and to a feedback problem
of the simple form.

Assume that this Simple loop eys.

Fig. 4. Reduction of general o ter is equivalent to a system & Let
simple form. the input be fo and the output g a KfL);

I
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then

K10) f * D(S() 44?)

or, as a system equatiun with the nutatioe, of secUon 4. 3,

K -I&lie K 1661

where I designates the identity system.

Now suppose that H is an analytic system. We assume that K is anlytic. and
obtain a formal solution - we shaU determine later whether K is, in fact. analytic. We

shaU consider that HO a 0, since a nonzvro H0 represents merely a constant added to

thc input, and we do nut have to consider this as part of the feedback loop. Tres, for

Koo we obtain
Z 3

Ko a It1(0) Ko 0 +Isle. 0) Ko04 2 33(0, 0,0) K; (69)

This equation may have nany solutions, but it wUl always have the soluticot K Z 0. We

assume. as is ofte-n tne came &n practicv, that Pw Pro looking for the solution th.t gives
zero output for zero input, and heice we accept tWe solution K° a 0. This allows us to

use the simplified form of the cascade equations which occurs when the constant terz..s

of both components a.- zero.

The next equation that we obtain is

K 1 gla)a I + Ha(s) Kl(s) 470?

from which we determine that

K Is) -1 (711

This is the result that would be obtained from an app-oxizate linear analysis. Next we

obtain

Kfasi. ) a Hils( #a )K (l 1 ,s 2 ) * HZ(si,1Z)KI4sl)Kl(sZ) (?Z)

and, b•ice KI has already been computed, this equation can be solved for KZ. and we

have

Hz fl~l S) (7))

K4(s1"s2 ) •I - Hl(sI (a 1 +1 H - HIs I))(I - Hi(S))

This procedure can be continued indefinitely, since all the formulas for higher order
, Bsystf-ms transforms Kn, as derived directly from the cascade formula, will ewitain

Kn only in o'e term on the right-hand side. Furthermore, since Knl n ... i) appeare
on the right, mult.ptiec only by HII(C + ... + an). the only factors in the dewaen-uator

'ta
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Fig. S. Modification of loop for proof of analy1icity.

of the resulting expression for Kn wlU be cf the form I - III, with various arguments.

The form of the solution suggests that the stability of the resultant system &, and

its analyucity as well, might be determined solely from the linear approximation. This

is a conclusion that has been reached, in a sGmewhat different context, by Poincarg

and Lapotuoff. anJ it wLl nuw be sh~own that it is essentially true Also in this case.

We begin by separskting the syste n I Into two parts, a linear part _H', and a part
f.U contauung no li,.ear term, as shown in Fig. S. We then solve the linear part of the

feedback loop separatwly, and obtain a loop with a forward path through the linear sys-
tern K' which is equal to the li,.ear part of K. and a return path throigh MI. The solu.

tion of thW loop is the same as the solutlun just obtained; hv-. ever. we are not interested

now in the formal solution for the system transforms, hut rather in obtaining bounds on

the bound function and the radius of convergence.

For this modified Ir e obtain, for an arbitrary input f.

K f) , - i[f+ H(lit'))] !74)

or, in terms of systems, we have

A K-V' *0 U* + III 10(75;

r Since to is Linear. by supotiibion Eq. 74 becomes

+ W.,. • I ' t, I (76,)

The known system K* • w' will now be designated by i" Then

o .
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"lrTherefore.

BKlt) W Hits) . BQ+(B01)1

kI BQIBK|) (11)

The constant and linear terms of the power-series eapansio.- of SQ are both ver*, so

that this equation can be used directly to determine. one at a tume, upper bounds an the

coefficients of the power-series txpsion of BK. that Ls. bounds on the norms of the

sy-tem functions kn. This procedure is a solution. in power-series form, of

y a Jk1 l + RQ (y) (79)

a. ylx) is an upper bound om BK(X).

A solution can be obtained without using power series by solving this equation for z

in lermb of y and graphing the result, as follows

S-a ( - BQ ))/Ik,I

As : icreases from zero, x increases from zero. roacbes a iULmum, ait therea|tter

decreases, unlerss the radius of convergence of BQ (which is equal to RH) 'A so am&U

that the curve comes to an end before thr mr•auum value is reached. Equtio.-k 60 gives

a as an analytic function o! y. and investigation of the analytic continsuation of this fu-c-
lion in the complex plane indicated that its inverse is analytiL In a circle about the origiA
with radi•u equal to the maiamum value o0 x.

Hence the inverse of this function - which can be obtained immediately from the
graph -- is the desired upper bound on the bWund function 8K The1 maximum v-slue of

z. which will occur either at the end of the curve (as determined by RHI or at the turningH!
Poit. to a lower bound ot. BK. Thus the resultant system K can be proved analytic if

ILI exlts; U~ta is, if the linear approximate soluti•n of the feedbsck loop has an abso-

lutely integrable impulse response.

Notye thai the impulse reponse can he absolutely integrable only if the UnLor

approsirnation does not Include a differential operator and has only damped trai-

sivnts. Stability is therefore a necessary, but not quite s.'ficient, condition for

ai-alyticity.

4.6 LEXAMIPLE OF FEEDBACK SOLUTION

Sectlion 4. 5 consottuted essentially a proof of the existence of the solution to certaint

problems and an o-itline of the method for their solut,.on. In this section .!te method is

applied to a slicific problem, with two changes in the method. First. the feedback loop

ts solved without first reducLu' it to the simple form treated in section 4.S. Secand.

4c
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the ye=lt wiW b proved analy•ic in spite of the fact that one of its components is not

aralyttc.
T. systeam to be analyzed is the detector circuit of Fig. 6a. which consists of a

di•od, and a capacitor. Since the diode is not pet fect, no resistor is needed in parallel

with the capacitor. The diode it assumed to have the current-voltage relation

Si -Ales"-l) (Si1

nsd the capacitor has capacitance C.

"The relationms governing the operation of the circuit can be expressed in the block

diagram of Fig. 6b. The system JD is a no.memory system representing the diode

with vcLage input and currean output; DO n 0 and

DnIsi.....in) - ABn/nl!

for aL other n. The system C is Linear. representing the capacitor with current input

anid voltage output; C (s) a i/Co. The system !P is not anal),tic.

;lotA . . .. .i -

eig. 6. Detector circuit. W Circuit diagram.

(b') BIcota dusagram. J,!) Synthesiv o4 the
approxcimate solution.
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Lelting IL 42 0 R. by a zmpe applaiahon of the cascaduzg iomlw we obtat

H 0 and
lADO

,uP) AE (53)
tinel.... n)=nIC~s! *...*a I1•

Now, if we represent the enire detector system by IS. we ontain the @ m eatin

fr,%m the block diagram.

"This Is not of the same form as Eq. 6S, which was treated in sectio 4.5. b* the same
method of solution is applicable. Fa r the first few system transforns, we bain

K% aC

AB 2 C (a) A

K2(s 1. SZ) IMS 1 +8 z) + AB)(Cs a AB)÷Cs AB)

and further system transforms can be calculated in succession.
The system transform K2 can be recognized as having the form ckarectristic of a

no-m-mory vy',mm preceded and foUowed by linear systems, and the second-degree

approxainatlon to Kj can thus be sy-nthesited in the form of Fig. 6c frcm ths transformis
given in Eq*. $5.

The solution given in only a formal one, in the sense that it wiUl be waW if K is

ana•ytic, but we do not yet know whether It Is analytUc. To show a"lyt.z7, we view

the circuit from a different point of view. We cnsider the system wrth Upt eiS

before, but with v as the output, and calb this system J. Since v w eI - a,. we find that

Sa I - K. Therefore, K is analytic if and only if J! Is. and these twosyweews have

the same radius of convergence. Furthermore, the norms cf their sym•a functions

will be the same. except for the first, so that Bp can be used to deterziim botmds on
the error that results from using onl a finite number of terms of the emrswon for J.

The block diagram for E hab the L.Aiuple form of the loop discussed uin &CCion 4.S.

Sunce C is linear, we find Ji' and Us by separating out the linear part . For the

linear approximation, we obaaa

pit$) * Cs (Sb)Cs +A

"from which we determine that

l , s) -P AB/C) - (Si)
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and therezore jp1j 2 7. Proceeding as In *e .revos section, we find that

S• -Fq. Q• * , and when We ca.cade 21 and w e see that the trot.blesome a in the

daermumaxor of CI is canceled by the nLumerator tr4 PI" so t.At 2 1s analytic. From

the forcaua for the upper rAxaW an the bound ftuctiun of a cascade combination. we find

SQol) 4 (eB - I - Bm•S (So)

The Wu*J y1s) an the bowW ftuction Bp(x) is theretore determined by

SY - (e -i)/ZB (89)

The mtaximum alue of x. which is a lower bound on R PVRK. is (log Z- I/Z)/B', 0.1f93/5.

Ive graphical construction of the upper bound on B px) is shown in Fig. 7.

Jq0 10"

p

Il:
"* I S

Vig. T. WIn on the bound functio of the detector system. !

Ti result is somewhat dislappointLng, Inl that we would expect a m~uch larger, in

fact a infuu/te, radius of con~vergence. The radiu.s of convergence may in fact be infi-

n~ite. but the method we haw used is inherently incapable of indicating an infinite radius

of convvrgenct. It is a •ontservative method, base~d essentially an the assumption that

the feedtmck through the nadwxtear terms, which we are unabie to compute in general

except to determnine a bound an VtS magnittude, is rxerting the greatest possible effort

to mMOST "e System Unstable. Further research might rvveal less conservative tests

for iinalyucity. At any rate. we have p>roved ftht th radius of convergence is greater
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then sero, and have thereforpeostablished some validity for the result of the system cal-

culation.

4.7 TIlE IN/ERSE OF AN ANALYTIC SYSTEM

If 11 is a nonlinear system, which produces for every input f in a certain class a

corresponding output g e Jilf). the inverse H-1of ( i s a system which, for every input

g. produces an output f such that g a fUf). Then the cascade combination s -

the identity system I.
This dues not imply, in general, that H41 1i a L because if Ui can produce the same

output fur two different inputs, i-I varnuit tell which uf these inputs actually occurreJ.

Generally, we shall say that j hats a true inverse only if

Its_ I - l - l 190)

The inverse of a physically realizable system is not necessarily physically realiz-

able. This is known in the theory of linear systems; the inverse of a sinple delay ye-.

tern would be a simple antriipator.

Within these limitations. however, there are casec in which syhtem inversion is

important. For example, a two-terminal network ought be designated as a system with

current input and voltage output, and we inight want to determine Its expression with

voltage input and current output. Or, we may have a communication channel in which

the effect of some system c.mponent In to be canceled by introducing anothet component

in cascade.

The problem of determining the inverse of an analytic system is quite similar to the

feedback problem. Destig.ating the inverse of It by K, we have the system equation

i *aK a J. As in the feedback problem, an easy solution is possible only if HO a 0, and

if we then choose, out nf the many possible solutions for K., the bolutionr Ko a 0, which

wLIL always exist. We then cbtain

K (s) • I/H (s)

I~ K
-1I(1• 2s .aZ ) KI(to,) K 0112,)

-H218I, 82)

and further system transforms can be calculated successively. It can be verifted that

the"e terms also ,atiesy the equation K P * a L and it may be suritmised that this oqua-

tiot, is satisfied in general, so that ji is a true inverse of 1j, but a general proof has

not been f.unu.
",'.e p.ocedure for proving ! analytic by determining bounds on BK11) and RK is

similar to the procedure for feeitack problems. We separate 1 into a linear part 1tI
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and a part jig with no linear term. Then

The inverse of 4-' is K', the- linear Aprrnwimatlon to X. 2:aseading each side of Eq. 9!

with K', we have

5' * h•r , Is) * 5 '

*' • ' e K . K" • *1 • - .

" K,' - K * U *K (93)

and then proceed as in section 4. S.

We conclude that if the linear approximation to the inverse of an analytic system has

an absolutely integrable Imliulse response, then the inverse is aralytic.

The same argumcnt shows also that the inverse is physically realizable if its linear

approxlr .tion is physically realizable. We have in fact obtained K Lt the form shown

in Fig. S, which, if 11 and KI are physicially realizable, (jescribes a physical realiA.

tion of K in terms of physically realizable components.

4.8 MEASUREMENT OF NONLINEAR SYSTEMS

It has been shown that any s) stem that is continuous(R) ,asn lie approximated in ana.

lytic form, with error thOt is untformly sntaller than any preassigned tolerance. The

an approximation. Although sevral methods can be used to obtain analytic approxIma.

Lions to given systems, none of these methods can be used in such a way that a given

tolerance will be guaranteed. li

The problem is similar to that of determining polynomial approximations to a real

function. Three methods are available: determination of a polynomial that equals the

given function at selected points, as in the method of finite differences; espansion in a

Taylor series; and expansion in a series of orthoginal polynomials. Alt these methods

cian be generalized and used for systems The first will be described in this section,

the second in the section 4.9, and the third will be discussed in Section V.

Consider the time-Unvariant system 11 its represented by the functional b. which

gives the value of the outptut at any time In terms of the past of the input. The finite

difference of h with respect to *he real function * Is defined as

A P, (0 a -itu + 04 - W u) 1941

This defines alo ab a t.1nctional. since it specifies a real number for every real

function u for which h(u) and h(u + #) exist. We can then consider the system A H,

Swhich is represented by the functional A #b. as the finite difference of i with

respect to *.

4
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Finite differences can be taken successively, with respect to the same or different

#-functions:

A41•a b(u) -A A *Ib(ui N a h(u +.) - A6 hju)

* h(u ÷ *1 +*Z) bf(u + #I) - (fu + ib l

A14?b ,_(u.* 1 * • Ž(u 4'1 - • *1) -)

- bu+ 1 * +# ) + LU + * t + j " + }*3 )

- b(u) (9h

The general form for finite tifft re-'ces of any order can be inferred. These forr.ts can

be used for the experimental dettrmination of finite differences.

If H Is an analytic system, its fir.te differences will also be analytic. A straight.

forward calculation, in which terms of like degree are collected. gives the system
C

functions of the first Unlte difference. If we assume that the system functions hn are

symmetric, for the first few terms:

, ho ar hI(,r) +d' ÷ h2 (i, 1r2) +I ) ,Z) d2rId . +....

A h (r) = Zf h (v,-r,) 1T02) dv"

I
fr go' fad +(-t,) *(-r) d-r2dT3 4 .t

Ah( h 3 ((', tr, a' 3 ( .T 3) di3 +... 39 +

Nute that h0 does not appear anywhere in these equations, and that, in general. hn

appears nnly in A h nV A6h,_,, and so forth. Therefore, it It is a sy .em of degree N,

the Alh finite difference will involve only hN. and this will appear only In the constant

term, so that the Ntlk finite difference is a'cons Mnt-output system:

.. h(u) .NI •hr I.. V N) *j(Tj, d-i) I ... . N (97)

Thu• an experimental determination of A . 1. {b(O) for all poisible combLiationa

of ea. e ctions . is sufficient to determine the highest order system function

h.. WlNin this has been determined, the undetermined part of the system is a system

4'
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of degree N -I, and therefore all of the system function. .m. ue determined.

In fact, It is not necessary to use combinationh of all posuhtbie .functions. It, for

example. A 1 ... *.\b1O1 it determtined for aU possible combinations of functions

chosen from some complete normal orthogon-al sequence. then we obtain the coe•ticlents

of an expansion of i.n.& series of products of these fuentione.

If we use impulses as the *-funtUons, desiCnating by &= a unit impulse occurring at

v a x. then we have

16 ... 6Nh( WO) (9a)

If we use step fct;uons, deskgnatLng by aX(y) the value of a function that has value

zero for v> x, ind value I fot , K x. then we have

AsX IS- Vo aN ... J hN(.. I .4) d--.dN (90)

and •N can be deterniin. )y tiiffeientwating th't -

If we ase expontltaias. with the notation es(ij w ea e . then

Ac5 ... e Nb(O) a NI HN(a,.....s) (100)

An equivalent result can be obtained by using Lintisolds instead of exponentiala.
If we have a system that is no•t analytic •.,• ý..e jegree, we can assi-mi that it is

approximable byv an analy'tic system of degree N• and apply the procedure suggested. We •

then derive an apprc•umat, analy'ne system that gilves the satne output as the given ,,•s-

tern for the inputs that were used to determine the finite diffe.-ences.

The response cf a linear system to any input can be determined if we know its

response to a unit imp4lm. to a unit step. or to all of the sinusoids of a given amplitude.

We now have reason to believe that this can be extended4 tu nonlinear systems in the fol-

lowing way. The response of a continuous nonlineir system to any Input can be deter.

mined, at Ieast approximately, if we know its respiusse to all possible combination@ of

unit impulses. to all possible :umbinationf of unit steps, or to aUl possibie combinations

of sinuzoids of all frequencies with a given amplitude.

4.9 TAYLOR-SERIES EXPANSIONS OF ANALYTIC SYSTEMS

Through the theory of funcuo, - of a real or a complex variable we have come to

associate analyiicity with differe.,iab.lity, as well as with representation in a poweeseries. The differentation of an anAl•tic system is not only of mathematical Interest

(cf. Hlle (14)], but also useful in the determination of the system tunctions of an ana.

lytic system by a Taylor-series method.
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", As in vector analysis, for example, when the directiowr4 derivative of a scalar fune-
tinn of position depends upon the choice of a direction in bpace. an analytic system does

not have a uniqtue derivabtve. We shall defuie the derivative of an analytic system in

terms of the functional that represents it, snd we shall define it as essentially a diree.

tioial derivative.

The derivative of the functional b with respect to the real function * ic defined as

the limit of a finite difference quotient:

blu. +40 - b(u)
-h (u) a lim - 101)

"his derivative h* is also a functional. The time-invariant system that it defines will

be called fl., the der~vative of H with respect to o. We can now differentiate h with

realect to a function +. and obtain the second derivative h,,, and successive derivatives

can be defined ad infinitum.

If I is analytic, and its syssem fanctions are assumed to be symmetric, then a

straightforward calculation of the derivative shows that the derivative is analytic, with

system functions

h.. . ......... .. 'n ) x (n I) f h n÷ V 'rn I'

If # Is in PBI(M). for tasy M (that is not necessarily less than RH). then

1lhnh 4 In+1) MlhnI j (103)

from which it follows that the bound function of II Is no greater than M times the deriv-

ative of the bound function of Hj, and its radius of convergence is not less than RH-

It follows from the assumed ,,ymmetry of the system functions hn that the higher

order derivatives with respect to different functions are independent of !he order of dif-

ferenti-ation. Since, however, a system is not changed by making its system functions

syinmetric. this conclusion is true whether the derivative is calculated from syrmmetric

or unqymmetric system functions.

Applying the .. )t inula (Eq. IOZ) for the derivative n times, we find that the constant

term of the nth derivative is

ith
ha..4n nIJ ... f hn(?iTl~ * .... £'rn ~(,i() de1 ... dn (104)

Thus, hn can be determined from the values, for u a 0, of the o derivatives of 11. The

op=nme r.omment made :.n the d~scuasion of finite differtnces applies here also. The

#-functions for which tIm derivatlwvs must be determined need not be all possible func.

tions, and we can use in.pulses, step functions, or stnusoids, as In section 4.8. This
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result can be used as the basis ofa T•kayp srii, meiod f•or the feaswwir•nto• d -

near systems. It is not hard to show do

h1" a -lim & .to al -l

so that, for the application of the rayioi..wees, method, we can calculate the higher

order differences as limits of fiuute-d1•re•ce quouests. comrputed for a a 0. watead

of by compuoLi successive derivatase. Siall a.

The expression for the system functio•. in terms of derivatives provides a proi' of

the statement that the symmetric forms of %e satem f4'alcws art Unique.

The Tay:or-serles method can be used ovly for anaJytic syatcms. s•i=c it denirts

the system functons from Use snall-s&Ctal response of the system, and therefore deter-

rmints the large-signaJ response from the small-sig.al response by extrpoLatua,. Its

advantage over the method of fUiite differences is tha t is not restr'ced to v,-alte.i of

finite degree. As an experimental metbnd. at has the disdvantage that it invovqs Limaits

of observed values, s.- that many obserions may !: rAecessary to obtain e • b LIm. I
while the method ^f finite dtffereiies rtu .'e- only the observation of ou.psAt -•,s for

specific inputs.

4. 10 SYNTHESIS OF ANALYTIC SYSTEMS

Two methods will be mentioned for the synthesis of systems from theUr aonalyUi

representations. The first. obuioustv appicah"! only in special cases. couniists in

recognizing already famiL•ar forms ir the s,- em functions. It it Musctrtted an set-

tion 4.6. In whicn the second-degree approxim..on to the solution of a feedback priblen.

was synthesized in cascade fcrm. Cont=;,A investigation of the properues &and spPU-

ratlois~ of analytic representauuns can be espected to make this inethod applaccble to

an ever-widening class of systems.

The second method is based co the fac that if

• n
Shn(Ti....y)s fl *'!4(*) (106| I

then this term of the system tan be synteg.sied as a product of v•esr systems. if % ".

a sum of such products, then It cia be sythbesized as a mum of products of linear sys.

terns. Suco a product expression tan be obtiane4i by expandubIto in a series of products

of orthogonal functions. However. no wnvearsUation has betn made for determiling the

Conditions under which this method can be expected to viorld artoitrarily 80aii error.

Neither these methods nwr the methods proposed by Wiener and Bose ran be consid.

ered satisfactory methods of synthesis. All of these methods are capable of the foUllowng

absurdity: we are given a black box, a* examine at In the Lorawtory Ly aplAying ioputs

and oba.rvwng the outputi,, we assemble several hundred do;lars' worth of equipament Lc

approximate its characterist:cs. and then open the box and find that It contamn a hblMfial

4,
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of •,rrlpnents, the total cost of wiuch as am dollar. An exniple of this if found in the

detector circuit analyzed in sccUon 4. b. By no knoWn method of synthesis of nonlinear

svislents can we derive, from any expsressaon of the oULput of this detecto- Mz terms of

its inlwt. -L syntheuis in the- form in •'hich the circuit was origin•ily given.

A method of synihevis that meets the criteria implied by the foregoing discussion Is

a practical nevessaty. The discovc,-y of st•ch a method is one of Cme great unsolved prob.

lemp of the theory of nonlinear systems.

"4 1
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V. OHTHiCMOAL SYSTEMS

5. I MEASURE AND INTEGRAL

The purpose of 2U Sectiwn Is to w•sh. In a awneral w m., thes expanu-ar of real

functions in senres of orthogonal fisetions can be exteretl to indiate a swetho for

expanding nonrl-ar systems in seri• s of orugonal dm,.Nsis..S the ex'snawn of

real funcions " u" method uvol*a thic process of c/" i Me integral of a rial

function, the application of the met!xPd to ytinems will rvuzY imtegraton of "sems.

or at least. ,..t.c•a•- of f"ictiotalS. The idea of wtegraitc mathterefor. be extended

from reall bm - to systems or finuan.als.

For th.- , xi is appropriLate to LrWdlAte here at-at o te fundamenta•l ideas of

integration. in utAs section the re•atauoa between inletgrazmio .. d measre theory wdl, be

ro.gnly outlined. asd at will be ihoau msat tW.e theory of ptelm ry plays an iraporLant

p-art in the ...
We begin wiLt the iteLration of real functions. Suzppose me bave a real rUf.&tin f.

and want to integrate it over the Lntr-w-a! (A, B). The integral Ual we otam is defini• d

in geometric terms an the net area ,•tiveen the x.axis. tLe grape of y - f(s). a"! the

1ýae5 x = A. x a B. Ths3 area is obta.-ne•l. in principle. as oe Lit ri a s.u-.-- - c4

approximat;ons. each approximauti being obuaned aw d.-id4 tUe arta r : •

of strips and ewLintatAg the width ai Cle e lenZth of each eip. Is Cc • :*uri

are parallel to the y-auis.

In the classical defuutton of the Riemann integral . -z are a" onsu.cted b.

dividing the interv-al (A, B) Into a large number of SanalI st..•-erv2.lz and taking v.

subinterv&l an defz.rLg the width of a strip. The lengtibof - l strip is estimated as

dome -alue as&-. aed 'NY V) on the subinterval that defires its width. The integr-l is

estimated as the s the areas of the strips, and the integral is .a:Lned as the Lim.it

of these estimaTtes. .. e interval (A. B) is divided into smailler d smaller subinterv-als.

SIf f iS continuoias, the range over wh.cb (4z) varies cc each ,tetterval becQos arbi.

trarily small as the subintervals are an-de maul,. and the estumate of the lenth of the

aitrip becomes better and better, so that the Lirrt that defines &be integral eists. But

if f is not cont-uci-s. f(x) may..-,:anue to vary s.&e3 no mater how small the subLn-

terval Is made, an the integral th-4s derued wIll not eas..

To get around this difficulty, we iedefine the strips in wcb a way that (Is) cmn not

-ary w~dcly. -We d.v"de the y.-a4xs, x.a-ead of the x-ax•is. L-=to auvntervals. so that the

length of each strip can be estimated atth error that to less taxa the width of the subin-

terval, and define the width of the strip as the total ienXIAh of t set of all x ;or which

f(i) is in the sub'bterval. If f Ls cLutuuts, this set W! x's .' enaislt of a ,r.tle.tlo-

of dajcrete intervals, and the total •nPgth of this se is wpmy t-e saum of the Ieaaglis of

these intervals. But if ( is not contil.uo-is, this set rlat nt bie a collection of intervals.

and we are (a.eW with the problem of defhning the total lengr'A af a set of nupJwrs tb.. is

not an interval ad cannot be decomposed into iitervails.

K-
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The L.ebesgue theory of measure, by providing at l,-st a partial solution to thlis prob-

lem. achicves the desired generalizaUon of integra'wa. Tius theory show* how we can

assign, to ;ack of a large collection of sets called measurable sets, a number called its

measure, so that the meabure of a set has the properuies that we associate with the idea

of total length: the miasure of a set is always non.negative, and the measure of the

untoi of a finite or countable collecUon of nonoverlapping sets is the sum of the meesuree
of the component sets. In particular. the measure called Lebesgue measure has the
property that the Lebesgue measure of an Interval is the same as its lengrh, fly nmeans
of Lebesgue measure we can proceed to define integration for many functions that are

not continuous: for each subinterval of the range, we multiply the measure of the cor.
responding subset of the domain by some value '.r the subinterval or the range. take the
sura of these prcdJvcts as in eustlyate of the integral, and define the mlr.lt of these esti-

mates, as the subintcr-als are made s&aller, as the Lebeague integral of the function.
The point in which we are Interested here is not that the Lebesgue Integral L defined

foe functions whosa lermann integral is not defined, but raUer that the theory of inte-
gration in terms of measure can be used to define .ntegrals of functions that are not real
functions. ConsiJer any real-valued function, whose domain may be a set of any kind of
objeLts. Divide the range of the function into subintervals. and fot each subinterval con-
sider the subset of the domain on which asie value of the function lies in that subinterval.
If, to every such subset of the domain, we can assign a number that we can call its meas-
ure, then we can proceed, just as in th. case of the Lebesgue Integral, to define the Inte.

gral of the function.
The proLleni now is to daine a sneasur 3n a set of real functiors, and the solution

comes from the theory of pri bability. A probability ensemble iv a set o; objects, in
which we assign to every subset - or at least to certain subsets - a number called the

probability of that subset. The probability of the whole ensemble is unity; the probability
of every subset is noii-negative, and does not exceed unity, and, in fact. probabilitf has

all the properties trat art; required of a measure.
Therefore, if we have a real-valued function whose domain Is a probabUilty ensumble,

we can define an integral of that function. We divide the range of the function Into sub.
intervals, and for each subinterval we multiply some value in that subinterval by the
probability 'hat the value of the funcuton will lie in that subinterval. We add these prod-
ucts ':,cr all subintervals to obtain an estimate of the Lnterral. It will be seen that by

this process we have obtained an estimate of the ensemble average, or expectation, of
the value of the function. An integral, defined in terms of probebdaily measure, is simply
an ensemble average.

To define the integral of a functio.nal, all we need Is an ensemble of real functions a.
The Integral of the functional is then the ensemble average of the value of the functional
for this ensemble of u. The integral of a timn-invariant system can then be defined if

we have a LsLaUo-tary ensemble of Lsputs f. The statlonariness of the ensemble implies
that tho en.'..ble of functinna ut, Ue(,) s f(t-t),* will be the same for every t. and the

j 
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inerarrl of th,• system is defined as the integral, for this ensemble of u. of the ftuactuoej

Ltt represeits it; that is. the evaesnble average of the value of the oultpt of the system.

In awry practical sltuations. the sataomary ensemble of Lrp. its Li prescribed by the appli. 4

e.uon for wtdch the system is being conaaiered.

A 5.Z EXPANSIONS IN ORTHOGOM.A SYMTMIIS

* Ewe7 t ! -invartant system am be represented by a (uncuonal. and ewr stationary

esienmbie of functions f corresponds to some ensemble of functions u, whlch is the name

as me ensemble of functions ut for any t. Therefore. we shall do all our mathematical

wor tirni of functional*; and the results can be translated immediately in terms of

systems by the fact that the average of the value of a functional will equal the avragc of

the value of the output of the system that at represents.

Su�•so we have available in the laboratory a bank of nonlinear ttme-Jnvarmat sys-

teom and suppose we also hatv an iknown Unne-invariant system 1i that is to be

approxamated as a linear coar.bina;.on o the #ysten-8 %." Hepresentng these as f(me-

uoaala, se -,aU determine real ns oers c1 with the property that the functional

' ~N

is an approximation to h. The error of approxinmaton will be the output of the system

' K - � - i. represented by the bmc•inaI N\
r • Ill-h =h- •Jt 108)

Wo aleil obtain an approximate repraeentation of I in terms of the systems q,
This repesentation may be useful in two distilct ways. If the systems 9i are e"BY to

comstruet, then we have a way of c€.atstcti•g !! or an approximation to It. U the eye-

te % va have convenient mathemaucal representations, we obtain a convenient math-

ma•t.al representation of jj.

S.ppimm that the crtaerlon of approximation is that the mean.square value of the

error, for a particular stationary ensemble of Inputs, be as small as possible. We shall
dosamt. the mean or expectaUoa of the valu, of a functional by an L-!egral sign, to

show tat our mathematics is analogo~s to th, mathematics of real functions. Then a*

mast determine t•e numbers e1 sAW

I:I
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as a minonsma. At the nimmum val. Ow partial de.iviutives

w -zf ¶9 o)Lai

must all be zero. The condition for mi.mum racan-square error is therefore that, for

every k.

s0 (i01)

It is possible to implement this se-eme ut the laboratory. The output of each of the

sy-terns 04 is passed through an adjustable-gain amiplificr, which provideb for the adjust.

ment of C1. and the outputs of these avxpLifrrs are added to construct the system fis.

The output of flJ is subtracted frcix the output of H to obtain the error system E. Now

we must .multiply the output of each vtibt systems 9, by the output oC E and obtain the

ensemble average of this pruduct. Ii up ensemble of inptts is 4 rgodic, this ensemble

average will equal a time average, a "an t,;ercr has suggested) we might combine the

mu&tiplicaUm with the estimation of the time average by using an overdamped electro-

dy)amoometer. Then we have a bank of N meters. and we must adjust the N gain con.

trols so that each meter is made to read sere. , '

In the ge-ieral case this may be a utuiesome procedure, because the adjustment of

a single g.am € control may change tbo rea.Ags of all the meters. However. if the sys.

tems Ri are such that
fi

S• (IIZ)

10, it i 0 I

then

mo that the reading of the kth meter is affected only by the kth gain control, and the

appropriost adjustment can be mode qltoe simply, Furthermore, if the meters and the

-si.L- controls are appropriately ca•brated. we can perform the adjustment by setting

each pain control to zero. resduig eac• mteter, and then setting

c 1 0 f(1141

which will aive the desired approssat&= iPmaedi tely.
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The rondlition imposed an the systems 91 can be expressed in a terminology that to
conventionai for the analogwi*soltuation In Ulm theory of real functions. We shall say
that the! systemns % are aUl mrmallsed, and that sit are orthogonial to each other. The
set of systems will be called an orthonornmal, or normal orthogonal. set. The ippr~oxi-

* mation obtained by this procedure will be called an expansion in orthogonal systems.
Since these conditions were imposed In connec-.1on with a partic~ular ensemble of Inputs,
we shall speak of systems normal and orthogonal with respect to a particular input

enstembl ae. s9~ as given. are not normal end orthogonal with respect to the per.

ticular input enoembile that we intend to use. we can conac .,t. b;- means of a well-known

procedure. a set of linear combinations of them that are normal mind orthogonal. This
procedure can be des-ritted by supposing that we have already constructed a set of n
normal and orthogonal systems, and we have a system 9,+ that is not normal or orthog-

4on4 to tbese a joysteirs. We are, to construct a linear combination of these n + I eys.

temo which is normal and orthagonal to the ftrot n. We do this by constructing. with
the use of the first n systems, a aiinimw-mean - quare - irror approximation to nl4

* The system whose output is Uae error of Lhis appruxmirn a k-Iis ortliolg'KIa to the first n
systems. and if it is nut equivalent to zero, then we can normalize it by multiplying It
by an appropriate constant. OIf it is equivalent to zero, then every line'ur combiratlon
of the n ytm can beas otie withte is n. Ad h augitnnal syte

is of no us -tu mi.)

In genera',. -n. al1 we need to obtain mininmum -mean -aqua re-error approximations
Is a bank of nos.!Ajwar systems, somec adjustable-gain amplifiers, and some product. f'-1
average meters. The pven systems can be urthoofonAlized ane. can then be used to obtain
orthogonal expansions of any given system.

How close can theme approximations be made7 Can the m~ean-square error of approx.

bounded(fR), we have a ready answer. We begin with a sequence of linear systems Nif
4. with impulse response funciums k,, such that there to no function u not equivalent to

zero for which

tor all I. (The sequence uf systems whose Impulse responses are the Laure tic)
* ~tjons has this property.) Then we form a setquence of ro'n. *-/utem# consisting of

a constant-output system. these linear systemis, and all Jroo¶i .r of combinations of

these systems. The set of all linear comnbinations of thesc o * r systems is aft
rigobra that separates points 4cf. section Z, 3), and therefore any systemn that is contin-

U'aue(RI can be approximated arbitrarily closely by such linear combinations, in the
sense that for any positive P.Arnbwr a there exists a &&near combination of these systems



whose output never differs from the output of the given system by more than C. It follows

•imedmitely that the mean.square error can thus be made less than (9 ThM method at
orthaoina ezpansions will yield opproximatmios with mean-square error that is as sma&l
as can be obtained, so that. by using d svfflclently large number of systems. the mean-

square error can be made arbitrarily emaUl.

This does not imply that the method of orthogonal expansion can be made to yield

approexurtions with uniformly small error. However. it is easly seen that the probe-

bality of an error of magnitude greater thar any number A cannot esceed (c/A) if thea
mean-s4.ar? error is a or smaller, so that we have (for the ensemble with respect to

which the expAnsion was made) an almost unformly smara error in a statistical sense.

An .'xqw...iun made with respect to one input enaemble will have small error, although

not unamum error, when some other input ensembles are used. Consider two ensembles

of inputs. EI and E2. consts.nlg of the sasme set oftinputs with different probability die-

tribuun•s. Suppose that the system H has been approximated by means of an orthogonal

expansion wiUa respect to El, so thtt (if we attach the ensemble designation to the into.

gral aign) we have "

f Z< 8 (116)

If the Frobability of any subset in ensemble Z2 is never greater tham M times the probe.

bdity of the same subset in EV, then obviously

Then by making the mean-square error that is measured with EI sufficienUy small, we

can make the mean-square error that is measured with E£ as small as may be re.- .red.

Thus a smaU mean-square error Li one ensemble implies a srmal mean-square error

in another ensemble. Furthermore, even under the looser condition that every set with

zero probability In EI must have zero probability in E., we can conclude that with input

* ensemble E there must be Prnall probability of large error, even though no -*Aund on the2
mean-. quare 'rror can be set. There is reason to believ.e thsit, if the system that is to

be approximated Is continuous, even this condition car. be related, and that there may

be orthogonal methods of deriving approxu'nations with uniformi' snalU error, (It is

known that such methods exiat for the approximation of real functions.)

Some of the preceding discussion is applicable to the expansion, in orthogonal sys-

tems. of systems that are not ccntinuouo (for example, hysteretic systems). In this

caw,. i! the nonr.ear systems A are continuouma (as they will be if they are products of

linear systems with Laguerre-function Impulse responses), an approximation with

unaormly small error cannot be obtained. However, it may be possible to obtain
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approxizatioens wadi wmalI mean-square error, perhaps even arbitrarily smal. At siq

rate. the smadlet mam-square er-or that is possible with a continuous approzimatito•

can be approac.bs&.

S. 3 k-ILTERM;G ANtD PREDICTION

The same metod can also be utsed in m•nimum.tneL*nsquare.error filtering and
prediction probem. if the Joint ensemble of input and desired output can be prtduced

in the laboratory. We proceed precisely as though the desired output had been obtained

as the output of a s•s"tm to which the Input was applied. The results of the preceding
section tflen imply that. with any bank of nonlinear filters % that is adequate to approil.

mate a continuous eyrtem -vith arblitrsrlly small mean-square error. we can come arti.

trariiy close to an' p:rt. .'nan,• that ban be achieve( with L continuous filler.
Note that there may be '- ,omy problems, no optimum continuous filter. if the opl.

mum filter is wc .nV&nm. (A hourlatic I&,vmtr.'in'. a (tund In the theory of real
functions: the- e .ar,"tA I

ii
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